HYUNDAI TRUCK BODY BUILDER BOOK

2005.6

HYUNDAI MOTOR COMPANY

COMMERCIAL VEHICLE ENGINEERING & RESEARCH CENTER

INTRODUCTION

Thanks for you to use HMC products consistently. This book provides general work instructions for vehicles needed for all sorts of structure modifications by using the trucks produced in the HMC. This book describes cautions needed for installation, modification, or alteration on the HMC Chassis with cab. Comply with instructions of this book to secure safety and serviceability of vehicles. Also, this book describes regulations and standards.

- 1. In case the details of this book don't conform to the those of VEHICLE MODEL BOOK, the latter shall prevail.
- In case revision or additional details happen to detailed information, they are notified by the workshop communication and option revising communication. Therefore details previously published should be revised or added.
- If you find any error or mistake in writing, or have any questions about installation of bodies on the HMC chassis, please contact with HMC freely.
- 4. Detailed information in this book can be altered without notice beforehand according to engineering revision

HMC all the time endeavors to improve technology and to manufacture perfect vehicles. HMC wishes that this book did good to you, and is appreciative of you to make habitual use of its vehicles regularly.

HYUNDAI MOTOR COMPANY COMMERCIAL VEHICLE ENGINEERING & RESEARCH CENTER

INDEX S

1. GENERAL

- 1-1.Cautions regarding installation, modification or alteration
 - 1-1-1. Cautions needed for planning
 - 1-1-2. Cautions needed for work procedures
 - 1-1-3. Cautions needed for finishing and sending out products

1-2. Standard fastening torque

1-3. PL (Product Liability) confrontation

2. BODY AND EQUIPMENT INSTALLATION PRECAUTIONS

2-1. Fittings and chassis parts

- 2-1-1. Cautions needed for the rear end of the cab and the front end of the rear body
- 2-1-2. Clearance between the near parts of the ENG., T/M and fittings
- 2-1-3. Clearance between the exhaust system and fittings
- 2-1-4. Clearance between the propeller shaft and fittings
- 2-1-5. Rear axle
- 2-1-6. Fuel tank filler cab
- 2-1-7. Cautions needed for the installation of the near parts of the brake air master
- 2-1-8. Cautions needed for the installation of the air dryer
- 2-1-9. Cautions needed for the installation of the near parts of the battery
- 2-1-10. Clearance between the rear spring and fittings

2-2. Rear body

- 2-2-1. General precautions regarding the strength
- 2-2-2. Combined section of the rear body and chassis frame
- 2-2-3. Cautions needed for fastening the 'U'- Bolts
- 2-2-4. Other cautions needed for installing rear body
- 2-2-5. Cautions needed for fender installation
- 2-2-6. Rear fender mudguard rubber
- 2-2-7. Rear bumper
- 2-2-8. Reflective device
- 2-2-9. Side guard

3. MODIFICATION OR ALTERATION PRECAUTIONS

3-1. Chassis modifications

- 3-1-1. Chassis frame processing
- 3-1-2. Security parts
- 3-1-3. Parts for preventing noise
- 3-1-4. Oil pressure · air pipe
- 3-1-5. Exhaust system
- 3-1-6. Fuel tank

[Reference data] Pipe for subsidiary components

3-2. Cab modifications

- 3-2-1. Cautions needed in additional machining and alteration of the cab
- 3-2-2. Roof processing
- 3-2-3. Installation of wireless device

4. ELECTRICAL PRECAUTIONS

4-1. Electric wiring

- 4-1-1. Wiring and installation already installed on the chassis
- 4-1-2. General cautions needed for additional wiring or alteration
- 4-1-3. Earth

4-1-4. Fuse

4-2. Cautions in treating the components of an electrical equipment

- 4-2-1. Sort of electronic control system
- 4-2-2. Cautions needed in installing electrical components

4-3. Size of electric wire and permitted current

- 4-3-1. Sort of electric wire
- 4-3-2. Size of electric wire
- 4-3-3. Method of indicating an electric wire and connector

1. GENERAL

1-1.Cautions regarding installation, modification or alteration

1-1-1. Cautions needed for planning

After investigating on safety, rapidity, maintenance and applicable regulation fully, HMC sends out goods. When installing, modification, or alteration, be careful not to give a damage to the function here above stated.

- 1)Be careful not to give a revision to the security parts and the parts for measure to noise. Be free from heavy accident and regulation violation.
- 2)Be careful to strength, rigidity, regulation and safety of the installed , modified parts as well as light weight.
- 3)For weight difference between the left and right of fittings, the left/right slant to be within the standard.
- 4)Install the installation · modification parts in order that operation, detachment and check/repair be easily done.
- 5)Install the installation · modification parts in order that front view be prevented.

1-1-2 Cautions needed for work procedures

Considering damage to Chassis components, be free from damage in function. Because particularly damage of the brake device, pipe wiring and security component results in heavy accident, be free from damage securely.

6

- 1)With a view to preventing a damage of an electrical equipment in electric welding, conform to the followings without fail.
 - (1)'Off' of the starter switch
 - (2)Disconnect the minus(-) terminal of battery, place covers
 - (3)Detach earth wires of the cab to chassis
 - (4)Detach the connector(control unit etc.)
 - (5)Earth of a welding machine should be close to the welding area by all means.

2)In detaching the leaf spring, the anticorrosive applied to the leaf surface not to be damaged.

- 3)Before the painting, cover the followings with a masking tape etc.
 - (1)The contact face of disc wheel and brake drum, the contact face between disc wheels in double tires.
 (2)The contact face of wheel nut (p/shaft, PTO output shaft)
 (3)Matching flange of drive shaft
 (4)Piston rod of hydraulic pressure and air pressure cylinder
 (5)Each control valve of air line
 (6)Bleeder of transmission and axle
 (7)Disc brake
 (8)Caution plate, name plate etc.
 (9)Entrance of air cleaner air duct

In drying paint, the temperature of painted parts should be less than 80 °C.

When detaching wheels for painting repair, assemble them, as conforming to the fastening torque of wheel nuts. In case of a double tire, don't paint shaded area.

- 4)For the purpose of preventing the damage and a fire of battery related equipment, conform to the followings in treating battery.
 - (1)During the revolution of engine, don't disconnect the terminal of a battery cable, or take it out.
 - (2)When starting by traction (prohibition in an automatic vehicle), connect the battery by all means.
 - (3)In case of a rapid charging of battery, detach a cable from the both terminal (+), (-) of battery.
 - (4)The cables which are wired close to exhaust system to be prevented with heat resisting external material.
 - (5)In wiring a cable, be free from mutual contact.

1-1-3. Cautions needed for finishing and sending out productsWhen finishing procedure, after checking that a little performanceand function are secured , send out products.

- 1)After the practical driving, check securely that there are strange vibration on driving, noise, incompleteness of driving safety and other defects.
- 2)In case working, maintenance/repair, etc. on the HMC chassis are revised by the installation, modification, or alteration, make out the WORKSHOP MANUAL, and attach the label for warning signal and loading to the vehicle.

1-2. Standard fastening torque

- 1)Use the bolt and nut specified by regulations, and fasten the area which is not mentioned particularly with the torque of the following table.
- 2)Screw section and connected area should be drying condition.
- 3)In case of the strength classification of nuts and bolts (or stud bolt) differs, fasten with the torque of the bolt side.

HEXAGON bolt, Stud bolt Unit : N · m(kgf · m)						
Strength	4T		7T		8T	
Dia(mm)		\bigcirc	\bigcirc		8	
M5	2~3 (0.2~0.3)	_	4~6 (0.4~0.6)	_	5~7 (0.5~0.7)	_
M6	4~6 (0.4~0.6)	-	7~11 (0.7~1.1)	_	8~12 (0.8~1.2)	_
M8	9~14 (0.9~1.4)	_	17~26 (1.7~2.6)	_	20~29 (2.0~3.0)	_
M10	19~28	18~26	36~52	33~49	45~60	41~59
	(1.9~2.8)	(1.8~2.7)	(3.5~5.5)	(3.5~5.0)	(4.5~6.0)	(4.3~6.9)
M12	34~50	31~46	70~95	65~85	85~110	75~100
	(3.4~5.0)	(3.1~4.7)	(7.0~9.5)	(6.5~8.5)	(8.5~11)	(7.5~10)
M14	60~85	55~75	120~160	110~140	130~180	120~160
	(6.0~8.5)	(5.5~7.5)	(12~16)	(11~14)	(13~18)	(12~17)
M16	90~130	90~120	180~240	160~220	200~270	190~260
	(9.5~13)	(9.0~12)	(18~24)	(16~22)	(20~27)	(19~26)
M18	140~190	120~160	260~340	220~290	290~390	260~340
	(14~19)	(12~16)	(25~35)	(22~30)	(30~40)	(26~35)
M20	190~260	170~230	350~470	320~420	410~550	370~490
	(19~26)	(17~23)	(36~48)	(32~43)	(41~56)	(37~50)
M22	260~340	230~300	470~640	430~570	550~740	490~670
	(26~35)	(23~31)	(48~65)	(43~58)	(56~75)	(50~68)
M24	340~450	290~390	630~840	530~730	730~980	630~840
	(34~46)	(29~40)	(63~86)	(55~74)	(74~100)	(64~86)

11

HEXAGON FLANGE BOLT

Unit : $N \cdot m(kgf \cdot m)$

Strength	4T		7T		8T	
Dia(mm)		\bigcirc	(7)	٢	8	
M6	4~6 (0.4~0.6)	-	8~12 (0.8~1.2)	-	9~14 (0.9~1.4)	_
M8	10~15 (1.0~1.5)	-	19~28 (1.9~2.8)	_	22~32 (2.2~3.3)	-
M10	21~30 (2.1~3.1)	20~28 (1.9~2.9)	39~58 (3.9~6.0)	37~53 (3.6~5.4)	50~65 (5.0~6.5)	45~65 (4.5~6.5)
M12	38~54 (3.8~5.5)	35~51 (3.4~5.2)	80~110 (8.0~11)	70~95 (7.0~9.5)	90~120 (9.0~12)	85~110 (8.5~11)

HEXAGON NUT

Unit : $N \cdot m(kgf \cdot m)$

Strength	4	Т	6T		
Dia(mm)	\bigcirc				
	standard screw	bottle-neck screw	standard screw	bottle-neck screw	
M5	2~3 (0.2~0.3)	_	4~6 (0.4~0.6)	_	
M6	4~6 (0.4~0.6)	_	7~11 (0.7~1.1)		
M8	9~14 (0.9~1.4)	_	17~26 (1.7~2.6)	_	
M10	19~28 (1.9~2.8)	18~26 (1.8~2.7)	36~52 (3.5~5.5)	33~49 (3.5~5.0)	
M12	35~50 (3.5~5.0)	31~46 (3.1~4.7)	70~95 (7.0~9.5)	65~85 (6.5~8.5)	
M14	60~85 (6.0~8.5)	55~75 (5.5~7.5)	120~160 (12~16)	110~140 (11~14)	
M16	90~130 (9.5~13)	90~120 (9.0~120)	180~240 (18~24)	160~220 (16~22)	
M18	140~190 (14~19)	120~160 (12~16)	260~340 (25~35)	220~290 (22~30)	
M20	190~260 (19~26)	170~230 (17~23)	350~470 (36~48)	320~420 (32~43)	
M22	260~340 (26~35)	230~300 (23~31)	470~640 (48~65)	430~570 (43~58)	
M24	340~450 (34~46)	290~390 (29~40)	630~840 (63~86)	540~730 (55~74)	

HEXAGON FLANGE N	IUT	Unit : N · m(kgf · m)
Strength	4	
Dia(mm)		
	standard screw	bottle-neck screw
M6	4~6 (0.4~0.6)	_
M8	10~15 (1.0~1.5)	-
M10	21~30 (2.1~3.1)	20~28 (1.9~2.9)
M12	38~54 (3.8~5.5)	35~51 (3.4~5.2)

1-3. PL (Product Liability) confrontation

HMC does not guarantee for the extensive damage resulted from defects of installed components (fittings, modified or altered components on the HMC chassis). Therefore install · modify or alter according to the followings.

1)Safety engineering

- (1)Enough guarantee of safety/trust and maintenance service
 of safety device.
- (2)Safe-keeping of technical data, drawings and documents used in developing.

2)Manufacturing quality

- (1)Be free from wrong production, defective parts and assembling badness. And secure quality
- (2)Performance of quality validation check and safe-keeping of check record.

3)Revision of workshop manual and warning signals

- (1)Workshop manual
 - Record an effect on bodies, vehicles and others concretely, when making wrong installation. (Be free from obscure expressions which cause misunderstanding)

(2)Warning signals

Attach warning signals with comprehensible sentences, large letters and pictures to the position where the Body and Equipment.

Manufactures can take a look at them securely in order to use vehicle more safely.

2. BODY AND EQUIPMENT INSTALLATION PRECAUTIONS

2-1. Fittings and chassis parts

2-1-1. Caution needed for the rear end of the cab and the front end of the rear body

Since the cab-over type truck has the cab tilt locking mechanism at the rear of the cab (including the safety lever), power steering oil reservoir or radiator water reservoir, ENG. oil filler, oil dipstick, check \cdot refilling of oil for the auto T/M, be sure that the clearance between the rear end of the cab and the front end of the rear body is larger than the clearance indicated in the particular instructions 'Vehicle Model Book' to facilitate maintenance servicing.

But, install protectors to prevent goods on board from dropping into between the rear wall of the cab and the deck in the dump trucks.

2-1-2. Clearance between the near parts of the ENG., T/M and

fittings

Secure that the clearance between the near parts of the ENG., T/M and fittings is the following dimensions.

17

	Minimum clearance	N.B.
Near parts of the	Up and Down 40mm	Particularly, cable wiring
engine and fittings	Left and Right 30mm	should be attention in the
	Front and rear 25mm	dump and mixer type truck
Near parts of the	25mm	Exclusion the back side of
T/M and fittings		T/M
Detachment of the	Large-sized vehicle 160mm	To pull out the clutch
clutch and T/M	Medium-sized vehicle 140mm	spline shaft in accordance
	Small-sized vehicle 100mm	with slant
Detachment of the	Large-sized vehicle 150mm	ı
T/M upper cover	Medium-sized vehicle 120mm	ı
	Small-sized vehicle 100mm	

2-1-3. Clearance between the exhaust system and fittings

1)Make sure that the clearance between the installation and the inflammable materials(such as wood, rubber),the muffler and the exhaust pipe is 100mm MIN.

If otherwise, install the heat insulator.

FIG 2-1-1

- 2)For the clearance between the installation and any body or other equipment or device except those here above stated, electric wiring, control valve of hydraulic equipment, hydraulic hose, refer to the 3-1-5 'exhaust system'.
- 3)Don't install an installation to the outlet direction of the exhaust pipe.
- 4) In modifying or altering the exhaust pipe, the pipe opening section to be rear direction (left to be within 30°, right and up not to be allowed). And be free from heat loss of the near parts due to exhaust gas.

2-1-4. Clearance of the propeller shaft and fittings

Clearance of the propeller shaft (including the flange) and installation to be 50mm MIN. in large-sized trucks and 25mm MIN. (up and down, left and right) in small-sized/medium-sized trucks in contrast with the floating quantity of P/Shaft. Refer to the 'Body Builder Drw'g' for the floating quantity of rear axle.

2-1-5. Regarding to the rear axle

In case the pipe and the wiring of the brake hose and the electric harness are fitted over the rear axle, sufficient clearance is required in order not to contact with the fittings although the axle gets to be metal condition.

For details, refer to the dimensions of the 'Vehicle Model Book'.

2-1-6. Fuel tank filler cab

Make sure that other fittings don't interfere with pouring fuel into the fuel tank and with the manipulation of the filler cab. If pouring fuel is difficult due to the side guard which is in the near parts of the fuel tank inevitably, be careful not to interfere with pouring fuel into the fuel tank by cutting a part of the side guard or changing the shape.

2-1-7. Cautions needed for the installation of the near parts of the brake air master

In case of the air over hydraulic type brake used in the largesized medium-sized trucks, oil reservoir is installed in the near parts of the brake air master.

Therefore installed fittings should not interfere with the work of oil level check, refilling oil and air bleeding.

2-1-8. Cautions needed for the installation of the air dryer

As the air dryer is equipped with an aid to dryness in the inside, periodical check and exchange are required. At this time the fittings should be prevented from interfering with the detaching work of the air

20

2-1-9. Cautions needed for the installation of the near parts of the battery

The fittings should be prevented from interfering with battery check \cdot detachment and the detaching work of the battery cover.

2-1-10. Clearance between the rear spring and fittings

As the leaf and the auto grease tube of the rear of the main spring move while driving, fittings should not be installed within the 'A' dimensions indicated in the figure.

Fig. 2-1-3

2-2. Installation of the rear body

2-2-1. General precautions regarding the strength

1)Concentrated load by fittings

table

- (1)In case of the fittings resulting in partial load, concentrated load, or heavy load on the chassis frame during the stoppage work, install the Sub-frame and allot the load.
- (2)In case of installing sub-frame, stress allotment should be calculated by mixed quantity. In this case, allot the load, with chassis and Sub frame united. Make sure that chassis frame and Sub-frame should be united securely.
- (3)Apply chassis load distribution and the frame sectional coefficient indicated in the 'Vehicle Model Book' to the stress calculation of the chassis frame and the Sub-frame.
- (4)Stress of the chassis should conform to the following

	Static stress			
	Large-size	ed vehicle	Medium	Small
Material	erial High tension Steel plate		High tension	Steel plate
	steel plate	for frame	steel plate	for frame
Driving	(normal stress	(normal stress	(normal stress	(normal stress
condition	$55 \mathrm{kg/mm^2}$)	$45 kg/mm^2$)	$55 kg/mm^2$)	$45 kg/mm^2$)
good condition	less than	less than	less than	less than
road drive car	$9.0 \mathrm{kg}/\mathrm{mm}^2$	$7.5 \mathrm{kg}/\mathrm{mm}^2$	$9.0 \mathrm{kg}/\mathrm{mm}^2$	$7.5 \mathrm{kg/mm^2}$
bad condition	less than	less than	less than	less than
road drive car	6.5kg/mm ²	5.5kg/mm ²	6.5kg/mm ²	$5.5 \mathrm{kg}/\mathrm{mm}^2$

2-2-2. Combined section of the rear body and chassis frame

1)When installing a sub frame, gradually reduce rigidity toward the front in order to avoid stress concentration due to sudden change in the rigidity of the frame as illustrated below.

Fig 2-2-1

The method here above stated is the most desirable shape of the sub frame. But the process as shown in Fig. 2-2-2 may be used if the cab back permits space.

Fig 2-2-2

2)In case of short wheel base vehicle, add cross member for

support among sub frames.

3)If in terms of installation, it's difficult to shape the front end of sub frame as described above, grind it to the shape as shown in figure below before installation so that load point changes by bend of the side frame .

4)When using wood liner, form its front end as shown in figure below so as to release stress concentration.

Fig 2-2-4

5)In case of large-sized cab over truck, there is taper-cut

portions (width of frame changes into 840 to 940mm) close to the cab back face as shown in figure below. When liner sub frame gets stuck in this area, unite it with chassis frame.

Also, reinforce the *taper-cut portions* of the liner and sub frame by using steel plates to the inside and outside.

Fig 2-2-5

- 6)In case of the distance between the rear face of the cab and the front end of the fittings is wide in assembling sub frame.
 - (1)For installation of fittings with extremely great rigidity such as tank lorry, bulk, van and the like, it is necessary to select allowing attachment of the fitting close to the cab back face.
 - (2)If it is necessary to provide a large distance between the cab and fittings because of weight distribution, the sub frame should be extended as close to the cab as possible and be attached rigidly to the chassis frame again as described above.

Install the MT'G BRKT of dispiacement absorption type to taper-cut portions. After the brackets assembled by welding or bolt, tighten up securely by using bolt in opposition

Fig 2-2-6

- (3)In long wheel base vehicles, avoid installation of the welding type brace in trunion base area, and tighten up the MT'G BRKT of displacement absorption type or U-bolts.
- 7)Sliding prevention of before and behind and left and right
- In assembling sub frame by 'U' bolts and brackets, install the sliding prevention of before and behind in the rear end of the sub frame, the sliding prevention of left and right in the front end each one.

Fig 2-2-7

8)Cautions needed for installing liner

In case rivet head isn't installed on the flange side, add the sliding prevention of liner.

2-2-3. Cautions needed for fastening 'U'- Bolts

- 1)Give sufficient clearance to prevent the 'U' bolt for fastening sub frame and liner from contacting pipes, hoses, cables, and harness wires.
- 2)Refer to the data described in respective 'Vehicle Model Book' for locations where the 'U' bolts are used. Also, don't fasten 'U' bolt to the taper-cut portion of sub frames and liner.
- 3)When tightening 'U' bolt, place a wooded spacer inside the flange

Fig 2-2-8

of side frame to prevent its deformation. But, use metal spacer in locations subject to heat such as near the muffler.

- 4) When it's difficult to use 'U' bolt because of mounted tanks, attach brackets.
 - (1)Attach the brackets in opposition to the chassis frame with bolts as a rule, and in accordance with paragraph '3-1-1 chassis frame precessing'
 - (2)Don't attach brackets to crossmember ends, gusset ends, stiffener, or near the bend of the frame.

Don't install bracket in shaded area

Fig 2-2-10

5)When rigidity of fittings is insufficient in long wheel base

vehicle

In long wheel base vehicles, when installing decks which are insufficient in rigidity such as low floor deck and deck for transporting light materials, which causes torsion vibration, be sure to observe the cautions described in the following items.

(1)Sub frame

As steel material (pipes or channel), use dimensions not less than those specified in figure 2-2-12.

(2) Liner

Use apiton or steel band. Don't use soft materials such as rubber belt and cotton belt, which cause insufficient fastening force of the 'U' bolt.

(3) 'U' bolt and opposition bracket

Tighten wooden liner to chassis frame securely, with 'U' bolt and opposed bracket arranged as shown in figure below The direction of opposition bracket as follows.

(4)Apply the MT'G parts which can absorb torsion and vibration to

crossmember NO.2 .

2-2-4. Other cautions needed for installing rear body

1)Sub frame for large-sized vehicle with long wheel base

When a vehicle with a long wheel base is used to transport heavy materials (steel bars, steel plates, timbers) causing nonuniform weight distribution, insufficient rigidity of the rear body causes greater load concentration on the chassis frame resulting in lesser strength.

Therefore, always use sub frames of cross sectional dimensions not less than those specified in figure below.

2)Sub frame for large-sized vehicle with low floor

The height of sub frames of vehicles need installing the low floor rear body is required to be low. But when used to transport heavy materials, maintain the same strength and rigidity as here above stated. Also, absolutely be free from installation without sub frames causing greater load concentration on the chassis frame resulting in damages.

Fig 2-2-13

3)Center post

(1)When installing two-piece side gate rear body, vehicles used to transport heavy materials and insufficient deck, the center post should be installed in front of the rear front axle in order to prevent slacking of frame and allow smooth opening & closing of the side gate smooth in loading.

(2)When installing center posts in vehicle with long wheel base, frame is sometimes bent greatly. Therefore the clearance between the center post and the gate should be 2mm to allow smooth opening & closing of the side gate. 4)Frame related data

(1)Rivet dimensions

When installing spare holes in sub frame, use the frame related rivet dimensions as shown in the following table

Rivet diameter(d)	Head diameter(D)	Head Height(H)	Using line
Φ10	Φ16.5	8	Side frame of middle-sized vehicle : a side
Φ11	Φ18	9	Side frame of Large/Medium- sized vehicle : upper,lower,side Side frame of small-sized vehicle : a side
Φ13	Φ21	10	Side frame of Large/Medium- sized vehicle : upper,lower,side

(2) Tolerance of frame width and height

Fig 2-2-16

vehicle	Full width	height	width	R
large-sized		+1	±3	12
vehicle	±3	0		
medium-sized		+1	+3	10
vehicle		0	-0.5	
small-sized	±1	+1	+2	7
vehicle		0	0	

5)Lateral Inclination

Fig 2-2-17

(1)The height difference allowed between the left and right sides for kerb weight due to weight difference is shown in the table below.

Location	Symbol	Allowance
Headlamp (measured at centers of lights	H1-H2	less than 15mm
right and left sides respectively)		
Frame Rear ends(left and right ends)	H3-H4	less than 15mm

(2)Vehicles installed with rear bodies (including passengers,

full fuel, with or without load) should also satisfy the

allowance specified the lateral inclination table above. When mounting rear bodies, check the inclination (using the formulas given in Vehicle Model Book on the base of the measurement for the chassis with cab

6)Install covers for water protection and splash board

Install water protection covers for transmission breathers, clutch power cylinders, clutch boosters, air masters, batteries, etc. When a large quantity of water may possibly pour over them. Install the covers allowing for easy servicing or inspection of the pipings connected to the air tank.

An example of installing covers on a tank-truck is shown in figure below.

7)When installing fittings around the chassis number stamping position of the forward side of the side frame, the chassis number should be identified from the side of vehicle.

8)Most end cross member of large-sized vehicle

The most end cross member of dump and a part of long wheel base

vehicles is installed with bolt fastening to facilitate installation work.

But in shifting the cross member, be sure to observe the cautions described in the following items.

- (1)How to install the cross member in side frame after shifting it
 - (1)In case of installing the cross member with bolt, enlarge the hole and then use the 7T-M12 bolt. Also the bolt used for temporal fastening before shifting should not be used absolutely.
 - ②In case of installing the cross member with rivet, use the Φ11 rivet
- 9)How to install protecting plate of large-sized short wheel base vehicle

(1)Protecting plate used for splashed stone

In case of the vehicle with misgivings that pipes and device or equipment around air tank can be damaged by the stones splashed by the rear wheel, driving on the offroad many times, install protecting plate in the side guard stay by the main principle shown in figure below. (2)Preventing plate used for freezing

In case of the vehicle with misgivings that it is hard to detach spare tire due to snow and mud which is splashed by the rear wheel and attached to near spare tire in cold place, as shown in figure below, install protecting plate

35

in the side guard stay of the left in vehicle also.

10)So care should be taken not to damage harnesses and pipes, in fixing the fittings.

2-2-5. Cautions needed for fender installation

1) Rear fender

The clearance between the Rear fender and the tire should be decided in accordance with the rear axle upper rebound limit "h" specified in Vehicle Model Book as shown in figure.

(1)The shape of the rear fender outside should be bent to raise safety and strength. Also as cracks happen easily at edges of the rear fender, make bends on the inside.

- (2)In installing rear fender , observe the following items
 - ① Overall width of fender should be 2,500mm MAX.
 - ② The outer edge of the fender should be placed outside of the rotating part of the tire. And cover the range of the front 30° and rear 50° line by all means. So care should be taken, because the regulating items as to the pedestrian's safety measures have been decided.

Fig 2-2-22

2)Front fender

Cautions needed for installation fender in the front two-axle vehicle.

- (1)After watching the moving of tires carefully when steering, install fenders.
- (2)The cross bearer shape and position of rope hook near fender must conform to the moving of tires.
- 2-2-6. Rear fender mudguard rubber
 - 1)Install mudguards, depending upon the fender or in consideration of splash protection or preventing roll-in with wheels.

(Unit : mm)

			,
	LARGE-SIZED	MEDIUM-SIZED	SMALL-SIZED
A	200 ~ 250	150 ~ 200	130 ~ 200
В	300 ~ 400	200 ~ 350	200 ~ 300
(Unloaded)			

Fig 2-2-23

2)When installing long mudguards, work out a countermeasure to keep rubbers away from the tire.

Fig 2-2-24

2-2-7. Rear bumper

1)Vehicle model which needs installing rear bumper

In the ordinary vehicles supplied for goods transport, the vehicles that GVW is more than 8ton or payload is more than 5ton (excluding tractor).

2)How to install rear bumper

- (1)Rear bumpers and stays installed in sending out Chassises conform to the Korea Safety Standards, Article 19 Clause 3, Performance and Strength condition. If nothing happens in installing, install in this position. After making sure that the position of rear bumper installation conforms to the dimensions indicated in figure below, make a use. But, when sending out chassises, since rear bumpers have not been installed regularly to prevent pedestrians danger while transporting goods, install them in the legal direction.
- (2)Even when installing in legal position in special bodies, move and install rear bumpers by the followings when they are suitable for the following dimensions.
 - ①The installation of the rear bumper and stay should be assembled with the standard bolt of the Chassis section.②Install stay in the chassis frame.
 - ③Be careful not to interfere with the mark of the registered number check and a light type.

(4) Within the limits of meeting the following dimension,

40

make the departure angle large as much as possible .

- (3)The following items should conform to the performance and strength condition of the Korea Safety Standards, Article 19 Clause 3.
 - ①In case of modifying or altering the rear bumper or stay installed in chassis
 - ②In case of manufacturing rear bumper or stay newly
 - ③Instead of installing the rear bumper and stay with a normal bolt, In case of installing them by welding
 - (4)In case of inserting spacer between the rear bumper and stay

2-2-8. Rear reflector

1)Vehicle model which needs installing a rear reflector

In the ordinary vehicles supplied for goods transport, the vehicles that GVW is more than 8ton or payload is more than 5ton.

2)How to install rear reflector

(1)The rear reflector installed in sending out Chassis

conform to performance of the Safety Standards, Article 49 Clause 2.

(2)Installing position

- (1)The installing position to be left and right symmetry from the center line of vehicle, the center point of the reflected section should be within upper more than 250 ~ less than 1500mm from ground.
- ②The area of a reflected section to be 800cm² MIN., the area of fluorescent section to be 400cm² MIN.

2-2-9. Side guard

1)Vehicle model which needs installing a side guard

- (1)In the ordinary vehicles supplied for goods transport, the vehicles that GVW is more than 8ton or payload is more than 5ton
- (2)For details, reference should be made the Safety Standards Article 19 Clause 3.

2)Cautions needed for installation

Be free from impediment, when checking, supplying and detaching the following device or equipment of chassis frame side.

(1)Battery, switch box

(2)Fuel tank

(3)Brake oil tank

(4)Vacuum tank, air master, air tank

(5)Tool box (oil jack should be fixed with strap)

(6)Spare tire

(7)In case of installing the side guard of a channel and plate type, pay due attention to operation of the air tank drain cock. In case hand doesn't touch with the air tank drain cock, operate it with chain and wire connected as shown in figure below. Make sure that ground clearance should be kept not to be caught in projections of road surface in attaching to chain.

Fig 2-2-27

(8) In case the device such as fuel tank and the like is disposed at the outside rather than side straight section of the side guard.

Fig 2-2-28

3)Installation of stay

(1)In case of installing stay in cross bearer

(2)In case of installing stay in sub frame

Fig 2-2-30

4)Cautions needed in special installing vehicle

In case of having no body(fender and the like) in the oblique line section as shown in figure below on the rear wheel, or installing a part of body with thick rubber and the like, and being installed in the inner side rather than a revolving area (tire, wheel, wheel step, wheel cap, and the like) in semi tractor, the side straight section of the side guard should be out rather than the straight line connected with most outside of the revolving area of the front and rear wheel(excluding the swelled pats of a contact surface).

3. MODIFICATION OR ALTERATION PRECAUTIONS

3-1. Chassis modifications

3-1-1. Chassis frame machining

When machining on the chassis frame, be sure to observe the cautions described in the following items.

1)Generals needed in drilling hole through the frame

(1)Be sure to use a drill in making holes, never use a gas torch.

Fig 3-1-1

(2)Holes should be deburred after drilling.

- (3)When drilling holes, fuel hose, cable type, and tube type should be protected against damage.
- 2)Cautions needed in drilling holes through the side frame (1)The size of holes and distance between holes should conform to the following table. The conventional holes (bolt and rivet hole)should conform to the following table.

	HOLE D	DIA : a	CORNER~	HOLE END~
VEHICLE	Hole for tension bolt	Hole for shearing	HOLE END	HOLE
	a tension force and	(In case of bolt only	(h)	(a)
	compression force	pression force has a shearing force		
	applied)	lied) applied)		
Large-sized veh.	less than $\Phi13$	less than $\Phi17$	more than 30	less than Φ13 ~ more than 30 less than Φ15 ~ more than 45
Medium-sized veh	less than $\Phi13$	less than $\Phi13$		less than $\Phi 17 \sim \text{more than } 60$
Small-sized veh.	less than Φ11	less than Φ11	more than 20	less than Φ11 ~ more than 20

(2)The hole more than $\Phi 15$ for shearing bolts should be applied to the double frame lying in the sub frame. The section applicable to the weight decrease hole should be welded with a reinforced plate attached as shown in figure below.

(3)Don't drill holes through the trunnion stiffener and cross member gussette.

Fig 3-1-6

(4)In case of the super frame (Web type frame)

Do not drill the side frame upper or lower flanges by all means.

(5)When drilling holes except for the super frame (Web type
frame)

①Do not drill the lower flange between wheel base and the

upper flange of the rear over hang.

Fig 3-1-8

②A hole on the flange surface for a horizontal direction. And observe the following dimensions.

vehicle	HOLE a	PLATE ended~	CORNER section~	HOLE ended~
		HOLE ended b	HOLE ended c	HOLE ended d
Large-sized vehicle	less than Φ13	more than 30	more than 30	more than 30

3)Cautions needed in drilling holes through the cross member

For hole diameters and distance between holes should conform to the following table. The conventional holes (bolt and rivet hole) should conform to the following table

(Unit: mm)

	HOLE	E DIA PLATE END~HOLE END SIDE FRM or		PLATE END~HOLE END			
VEHICLE	FLANGE	WEB	FLANGE	WEB	GUSSETTE ~	CORNER	END ~END
	FACE: a	FACE: b	FACE: a	FACE: b	HOLE END: e	~END: f	: g
MEDIUM/LARGE-	LESS THAN		MORE THAN			MORE THAN	MORE THAN
SIZED VEHICLE	Φ11	LESS THAN	30	MORE THAN	MORE THAN	25	30
SMALL-	LESS THAN	Φ13	MORE THAN	50	100	MORE THAN	MORE THAN
SIZED VEHICLE	$\Phi 9$		20			20	20

4)General warning when welding the frame

When welding the frame, refer to the '1-1. Cautions regarding installation, modification, or alteration'

(1) Avoid welding on the side frame upper or lower flanges.

(2)Avoid welding on the trunnion stiffener and cross member gussette.

(3)Be free from the welding of the web side within the 20mm from corner, and 30mm from the hole edge.

Fig 3-1-14

(4)The up and down consecutive welding length between the wheel base should be less than a third of the side frame height.

Fig 3-1-15

- (5)Don't weld to install the fittings in the frame temporarily.
- (6)Give welded parts a good cleaning beforehand.
- (7)Use the welding rod for the iluminite system $5 \sim 6 \text{kg/m}^2$.
 - In case of a wet welding rod, use it after drying the wet welding rod by all means.
- (8)Be free from the welding sludge securely.
- (9)Be free from welding defects in welding, under cut, a blow hole, pit etc.
- (10)In case the shape of the welding beads is not good, which results in stress concentration and has an effect on fatigue strength, grind with a grinder.
- (11)In order to prevent the damage caused by spots of welding operation, take protective measures on the hoses, nylon tubes, harnesses, chassis spring, etc. by means of covers.

5)Cautions needed in welding the tension plate frame

There is the vehicle model using the tension steel plate for 55kg/mm² in the side frame. The welded area of the tension steel plate is apt to harden rather than that of the steel plate(SAPH45 : tension stress 45kg/mm²) for frame. Therefore in case of having need of welding the side frame, follow the instructions given below carefully. But, for the vehicle model using the tension steel plate, refer to the frame section coefficient table of the Vehicle Model Book.

- (1)Use the welding rod for low hydrogen system absolutely. And particularly for the places needing the strength equivalent to base metal, use the welding rod for the low hydrogen system tension steel plate.
- (2)As the welding places where the length of beads is short tear easily and, are not apt to harden, beads should be 40mm. In case of using short beads inevitably, be free from hardening with preheating or postheating treatment.

6)How to extend the frame rear overhang

In case of extending the frame rear overhang, follow the instructions below carefully.

	Extension Material		Reinforcement Material		
vehicle	material	plate	material	plate	
		thickness(mm)		thickness(mm)	
Large/medium-	SAPH 45	same as the	SAPH 45	6	
sized vehicle		base vehicle			
small-		same as the		3.2~4.5	
sized vehicle		base vehicle			

(1)Material

(2) How to extend the frame rear overhang

(1)In case the length of extension section is less than 300mm Perform the butt consecutive welding from the outside, and grind the surface with a grinder. There is no necessity for reinforcement for ordinary use. But in case heavy loading works upon the extension section, perform additional reinforcement by the main points shown in figure 3-1-17.

②In case the length of extension section is more than 300mm.

Add reinforcing material to the inner side of the side frame. Perform the butt consecutive welding onto the side frame and extending material, and grind the welded surface with a grinder.

Fig 3-1-17

③In case there is the vehicle model having a taper on the lower

Surface of the side frame rear ends, so care should be taken in cutting perpendicular to or extending(flat to upper surface).

(3)Cautions

When grinding the flange inside of the butt-welded side frame, make sure of a clean finish by grinding free from under cut, pile up or convexed bead.

Fig 3-1-18

7)Extension and shortening of the wheel base

Consult with HMC on extension and shortening of the wheel base by all means.

8)Cautions needed in installing the fittings in the side of the side frame

As a rule, do not attach added equipment together with components on the frame side (fuel tank, air tank, air master, battery, etc.).

9)Other notices about frame

(1)Absolutely, do not make notches on the edges of side frames, cross member flanges and trunnion stiffeners, cross member gussette ends like the cutting shown in figure below

(2)Side frame reinforcement

In case of attaching the additional outer stiffeners to the side members, which cause sudden changes of the rigidity at the end of the frame reinforced partially, what's more, cracks on the frame, there is no need for reinforcement in ordinary circumstances. The use of such stiffeners are, however, inevitable due to some special fittings or operating conditions, pay full attentions to the following points.

- (1)Do not bring the end of outer stiffener close to the end of the sub side frame in the inner side of the side frame.
- (2)The end of stiffener should not be brought close to locations of stress concentration such as cab back face, spring hangers, cross member ends, etc.
- (3)Do not cut off stiffeners vertically. It should be cut so that its end has an angle of slope less than 45°, and its length should be more than 800mm.
- (4)Outer stiffeners should be fixed to the side frame by means of riveting or plug welding on the web.
- (5)When drilling rivet holes, side frames and outer stiffeners should be processed together. And the difference between the hole and rivet diameter should be less than 0.7mm.
- (6)Use the Φ10 rivet in medium/small-sized vehicles, Φ11 in large-sized vehicles, and arrange them in JIG-JAG layout.

- (7)The identical dia. Rivet should not be riveted again upon the identical position. But, only when the dimension from the edge to the edge of the rivet hole is more than 25mm, it is possible to fasten again after enlarging the Φ10 rivet to the Φ11 rivet, the Φ11 rivet to the Φ13.
- (8) In order to prevent the damage of the rivets and the bolts caused by plug welding.
- (9)The hole diameter of plug welding should be Φ 30, and arrange them in JIG-JAG layout.
- (1)The edges of the holes for riveting and plug welding should be 25 to 30mm away from the edge of the outer stiffener.
- (1)The pitches of riveting and plug welding should be 70~ 150mm, and the pitch near the edge of the outer stiffener should be of a small size.
- ⁽²⁾As ⊏-shaped stiffener can not be strictly fitted to the side frame due to difficulty of machining accuracy, Lshaped stiffener is recommendable
- ⁽³⁾When installing a L-shaped stiffener, the flange should be placed onto the tensile side of the side frame's stress.

59

Fig 3-1-20

10)Rear hook

When moving rear hook, be sure to observe the instructions below.

(1)In case of installing in the side of the frame

- In case cross member is not installed in the rear end of the frame, perform intermittent welding (20mm) onto the inner side of the frame with a steel plate(plate thickness 4.5mm, length 150mm, width 100mm). And in case cross member is installed, be sure to install as it is.
- (2)In case of installing in the lower side of the frame In case cross member is installed, do not attach added equipment. And In case the rear end of the frame is opened, be sure to install the reinforcing material (plate thickness 4.5mm, length 150mm, width 60mm) in the inner side of the lower frame.

3-1-2. Safety part

1)Cautions needed in treating

(1)Be free from modifying or heating the safety parts such as

front axle, steering relation, brake hose, etc.
(2)Heating-related parts among safety parts as follows

KNUCKLE ARM	STEERING UNIVERSAL YOKE
KNUCKLE ARM BOLT	STEERING SLEEP JOINT
TIE ROD	STEERING SPIDER
TIE ROD ARM	Related part of STEERING CONNECTING LINK
TIE ROD ARM BOLT	BRAKE HOSE, BRAKE PIPE
FRONT AXLE	WHEEL NUT
STEERING SHAFT ASS'Y	SPRING BRACKET (FRONT, REAR)
PITMAN ARM BALL STUD	SPRING U-BOLT
STEERING DRAG LINK	AIR MASTER
STEERING BALL STUD	AIR TANK
SLAVE LEVER	ELECTRIC HARNESS
SLAVE LEVER BRACKET	
STEERING BOOSTER END SOCKET	

(3)Cautions regarding brake hose and air hose

The hoses close to front and rear wheel should be maintained 50mm away from the fittings even in the worst state, considering a clearance during vehicle run.

Other hoses should be maintained 40mm away from the fitting. As mutual contact causes early damage and heavy accident, so care should be taken.

3-1-3. Part for measure to noise

1)Cautions needed in treating

The parts for measure to noise like a cover for shelter around the engine and T/M, muffler, exhaust pipe between exhaust manifold and muffler should not be modified or altered absolutely.

61

- 2)Items regarding a noise as follows, be free from chassis modification except 'BODY BUILDER BOOK'
 - (1)Change of engine model
 - (2)Change of reducing gear
 - (3)Change of shifting gear
 - (4)Change into unapproved tire
 - (5)Change of the size of exhaust pipe diameter, clamp and muffler
 - (6)Change of the size, pitch, number sheets and rotation of a radiator cooling fan
 - (7)Change of the diameter, shape and length of air intake duct
 - (8)Chassis modification interfering with cover performance of a cover for shelter around the engine and raising temperature of the inside of the cover

3-1-4. Oil pressure · air piping

As brake system and the oil · air piping of the steering system are safety parts, should not be modified absolutely.

1)Cautions needed in arranging pipes onto installing device or equipment

When connecting air to installing device from pipes of the brake system, since it is necessary to check on safety, using frequency, relation to air supply capability sufficiently.

2)Nylon tube for air piping

In case of modifying the pipes inevitably because of shifting

device or equipment, faithfully follow the instructions below.

- (1)Cautions needed in laying pipes
 - ①Temperature should be within a range from -40 to +93℃, and pressure be less than 980kPa(10kgf/cm²).
 - (2)When intending to lay pipes less than minimum bend radius, do not use a bent tube once.
 - (3)Be free from laying pipes along the moving areas on harness and under spring.
 - ④In case of laying pipes along the engine room, install a heat insulating plate between high temperature area and the tube.
 - (5) If necessary to prevent above damage of the edge area, install a protection panel.
 - 61% deformation is due to an effect in temperature.

Therefore, maintain proper length in laying pipes.

(7)A clearance of clamp should be less than 600mm.

- (8)The edge shape of clamp should be the shape of flange not to damage tube.
- (9) If tubes contact with steel pipes, surface of steel pipes take place corrosion. Therefore, layout of tubes do not contact with steel pipes.
- OAbsolutely, be free from giving the high temperature of 100℃ in the process of drying of painting after placing pipes, as it leads to leakage in joints.
- (1)Oil like fuel, oil, grease, etc. makes no problem, but battery fluid should not be stained.

Do not allow sparks of welding contact.

③Once disassembling nuts, do not reuse insert, sleeve, and use new ones. And connector and nut can be reused. Assembling nuts temperature should be within 20±15℃.

	Minimum bend radius	Nominal torque
NAME	(mm)	(kg.m)
6x1	40	0.98~1.32
10x1.25	60	1.66~2.35
12x1.5	75	3.44~4.56

(2)Be sure to purchase the nylon tube related parts by referring to the following part number.

	Part Number				
Part Name	1/4 inch	3/8 inch	1/2 inch		
TUBE-NYLON	17915-4000*	17916-6000*	17916-7000*		
NUT	19517-04060	19517-06100	19517-08130		
SLEEVE	19502-04000	19502-06000	19502-08000		
INSERT	19506-04030	19506-06050	19506-08080		

(3)Piping procedure

① Attachment connector to device or equipment.

2 Cut off a tube at sharp angle.

③ Put insert in tube, and assemble nut and sleeve.

- ④ Hold tube until it adheres closely to the tube end of the connector, and fasten nut.
- ⑤ After tightening with hands temporarily, tighten tube to nominal torque with a spanner or torque wrench until it is pressed.
- Pull tube with hands and check that it comes out, after tightening it.

3-1-5. Exhaust system

1)Alteration prohibition limits

(1)Do not modify exhaust system except tail pipes in terms of noise standards

2)How to modify tail pipes

(1)Use the same diameter and material as the original pipe.

(Material of pipe : SEHC or equivalent)

(2)Do not give consideration to pipe extension.

(3)The bend radius R of pipes should be 150 to 250mm.

(4)Support the pipes elastically with cushion rubber HMC genuine parts, and the distance between the supports

should be less than 1,000 mm.

(5)As a rule, tail pipes should be placed in the direction as shown in figure below.

(Unit : mm)

	<u>.</u>		<u>.</u>		
	А	В	С	θ1	θ2
Fixed value	less than	less than	Don't exceed	0°~15°	less than 30°
of maker	100	1000	the over all		
			width		
Safety	-	-		Left direction	-
standard				less than 30°	

3)Clearance between exhaust system and other components

(1)When chassis components and tail pipes are modified, maintain the clearance below. If impossible to maintain clearance, install heat insulators.

Minimum clearance			
Large/medium	small-sized	Related chassis components	
-sized	vehicle		
vehicle			
100	80	Air pipe, Air tank, Vacuum tank	
150	100	Oil pipe, Air master	
200	150	Electricity harness, Fuel tank, Battery, Cable,	
		Rubber parts, Resin parts	
200	200	Fuel pipe	
250	200	Fuel hose	

(2)Tail pipes should not be installed under fuel pipes, hose joints and fuel filter drain tubes.

(3)Tail pipe outlet should not be placed in the direction of the filler port of the fuel tanks or it should be more than 300mm.

3-1-6. Fuel tank

1)Caution needed for transfer and addition of fuel tanks

(1)When changing fuel hoses, use rubber hoses or steel pipes. Because products of poor quality may cause a fire, use HMC genuine parts by all means.

①Steel pipe

Steel pipes treat rust preventing at inner/outer face and the section of pipe end uses shape like figure below. Rust preventing : inner face - copper coating

- thickness : more than $8\,\mu$

: outer face - zinc coating

- thickness : more than $8\,\mu$

BULGE TYPE

				(Unit : mm)
				Rubber hose
Diameter(D)	А	В	L(reference)	inner dia.(ref.)
6.35	7.1~7.7	5.8~6.4	2.8	5
8	9.0~9.6	7.6~8.2	3.2	7
10	11.2~11.8	9.7~10.3	3.2	9

SPOOL TYPE

(Unit : mm)

					RUBBER HOSE
diameter(D)	А	В	L1	L2	inner dia.(ref.)
6.35	7.1~7.7	6.35	4.5	3.5	5
8	9.0~9.6	8	4.5	3.5	7
10	11.2~11.8	10	4.5	3.5	9

(2)Extending fuel hoses is prohibited

(3)Use steel pipes within the engine room

(4)Any change of clips and transfer of clamp locations with

regard to relatively movable parts between the engine and frame are prohibited.

- (5)When sharing with the fuel tank for vehicle in order to supply fuel to the engine for a refrigerator, connect from the tank body by all means. Detachment from the engine supply system for vehicle is prohibited, as it interferes with the supply of fuel to the engine.
- (6)The filler port of the fuel tanks should be more than 200mm apart from exposed electrical terminals and switches.

2)Transfer of fuel tanks

(1)Do not interfere with the side guard and the fuel tank components

(2)Install the fuel tank within the wheel base.

(3)Clamp fuel hoses at intervals of 400 to 500mm. Do not install hoses along electrical wires or battery cables.

Fuel hoses should be 20mm apart from electrical wires or

battery cables.

(4)Fuel pipes should be fastened securely by means of clamps, 15mm apart from the edge of other parts and more than 25mm from relatively moving part.

3)Addition of fuel tanks

- (1)When an additional fuel tank is to be installed, use HMC genuine parts.
- (2)When an additional fuel tank is to be installed, a cut-off cock should be provided in the tube connecting each tank.Only use HMC genuine parts.
- (3)When the outer diameter of the return pipe is 10mm (Sent out fuel tank 8mm) in case of exchange installation, pipes should be connected in accordance with the followings.
 - ①Cut the return hose which has been already installed halfway, add arranged adaptor.

②Do not install the adaptor in the engine, T/M, and between T/M and the frame. Fasten securely with a clamp so that adapter does not sway, and be sure to prevent it from interfering with brake pipes, hoses and electrical harness.

③Feed line and return line should not be turned upside down. [Reference Data] Pipes for an example

1)The shapes and dimensions of chassis pipes

Use following steel pipes for chassis.

D	А	В	t	С	S	MATERIAL	TORQUE	
Dia.					Min		N \cdot m (kgf \cdot m)	
					•			
4.76	6.6~7.1	3.0~3.7	0.7	1.4	1.0		13~17(1.3~	
							1.7)	
6.35	8.6~9.1	4.5~5.2	0.7	1.4	1.0	SPCC	19~26(1.9~	
							2.6)	
8	10.5~11.0	6.2~6.9	0.7	1.4	1.6	(Fluorine	29~39(3.0~	
							4.0)	

[This surface should be smooth

10	13.0~13.5	8.2~8.9	0.7	1.4	1.6	resin	39~50(4.0~
							5.1)
12	15.0~15.7	9.8~10.5	0.9	1.8	1.6	coating)	59~78(6.0~
							8.0)

15	18.1~18.8	12.7~13.4	1.0	2.0 1.6		69~93(7.0~	
						9.5)	

2)Cautions needed in laying pipes

(1) When extending pipes, do not let each pipe be stuck together.

- (2)When connecting pipes, join in a flare style, and do not tighten forcedly. Also choose the place which makes retightening work possible.
- (3)Be free from high temperature heating absolutely.
- (4)When pipes passes through frame, insert grommet into the area of passing through, and again fasten securely with a clip. Be sure to prevent pipes from coming in contact with the area of passing through.
- (5)When detaching T/M, as pipes move to the rear in accordance with he engine slant, do not install in front of cross member.
- (6)Install the pipe within the frame and the cross member.
- (7)Do not install joints of the oil and fluid pipes above or near the exhaust system to avoid fire hazard when oil leakage occurs.
- (8)Do not install pipes between spring brackets (The outside of the flange between frames) and within movable part of the spring shackle.
- (9)Do not install pipes near such driving rotation as the propeller shaft or PTO shaft of the chassis side.

- (10)Be free from kick up parts in the course of a piping in order to facilitate air deflecting of the oil and fuel pipe.
- (11)Do not install steel pipe in the place where earth and sand are apt to be piled up and to run down. Also coating rubber with vinyl tube is prohibited, because staying wet causes rust.
- (12)Regarding the shape of air pipes, follow the instructions given below in order to prevent freezing when it's cold.
- (13)The bending of pipes should conform to the requirements below.
 - ①The bending of pipes should be performed with a bender.Do not use heat bending.
 - ②The bend radius R of pipes should be strictly in accordance with the following minimum bend radius.

(unit : mm)

Pipe nominal diameter	4.76	6.35	8	10	12	15
Minimum bend radius R	20	30	40	40	50	60

(3)The required length of the straight portion of pipe end and bent portion should be in accordance with the following figure.

(Clean and remove foreign matters from inside of the pipes with compressed air blower.

3)How to assemble when exchanging pipes

- (1)Pipes in exchanging assemble a joint etc., and flare nut of both ends tights slightly.
- (2)In assembling pipes, when it's difficult to assemble, forced tightening by spanner is prohibited. Get pipes fixed and assemble them by the main point of the (1) item, with joints fitted properly.

3-2. Cab modifications

- 3-2-1. Cautions needed in additional machining and modification of the cab
 - 1)When installing the control lever and the like for installation, they should be more than 50mm from the lever and switch types.
 - 2)When the cab floor has been drilled or notched in order to install the control lever and the like, pay attention to prevention of reduction in strength of the cab floor. Also perform rust preventing to additional parts in order to prevent rust.
 - 3)Take a post measure securely to avoid fire hazard due to the glass wool for soundproofing stained with oil.
 - 4)Be free from having an effect on detachment and service of the parts of device or equipment in vehicle.
 - 5)Pay attention to identification mark to prevent a wrong operation and confusion of installation related levers,

switches and lamps

3-2-2. Roof machining

- 1)When installing the roof spoiler, roof deck and the like, use genuine parts. But, do not install the deck or cab railing which need drilling holes through the roof panel or the drip rail for an inflow of the interiors and a rust preventing. Installation of genuine parts should be in accordance with 'Vehicle Model Book'
- 2)Cautions needed in installing the parts except genuine parts

(1)Roof area

- ①When installing exterior device such as roof spoiler, roof deck and the like on the roof, use the exclusive holes provided on the roof.
- ②The exterior device installed on the roof should be less than 70kg in large-sized vehicle, 50kg in small-sized vehicle
- (2)Cautions needed for installation
 - ①The bolt and washer made from Nickle-cromium stainless material are recommended.
 - ②Be careful not to give a damage to the body paint in installing exterior device.
 - ③Use packing between the exterior device and the body to prevent rust.
 - ④Recommended material for the packing is R715COP(EPDM), thickness less than 2mm, hole diameter 10mm (in largesized vehicle).

⑤Install exterior device by all means after finishing paint.
⑥Bolt tightening torque 36 to 52N · m (3.5 to 5.5kgf · m).

3-2-3. Installation of radio apparatus

1)Cautions needed for installation

- (1)The antenna cable of a wireless device should be away from harnesses · wires. As passing wires close to harnesses · wires causes wrong operation of electrical parts, pass wires 300mm away from harnesses · wires.
- (2)Fasten securely cables passing along the outside of the cab with wire stickers of high durability. Also they should be clipped to prevent them from interfering with the engine.
- (3)Since installing antenna by a taping screw causes rust, use bolts and nuts. Also the bolt and nut made from Nickle-cromium material are recommended.

4. ELECTRICAL PRECAUTIONS

4-1. Electrical wiring

Because electrical wiring and fuse are completed and sent out, after checking using load and frequency, and affirming a fire prevention and driving safety, add to and modify electrical wiring in accordance with the requirements below.

- 4-1-1. Wiring and fittings already installed on the chassis
 - 1)Be free from damages by the fittings.
 - 2)Be free from coming in contact with sharp parts.
 - 3)Be free from pulling by strong power in treating.
 - 4)In connecting, do not pull harnesses and perform with the connector held.
 - 5)Wiring and fittings should be away from the high-temperature parts.
 - 6)Be free from interfering with check and service of the wiring electrical equipment after installing.
 - 7)In installing buzzer type for the fittings, common use with the buzzer of chassis and installation of similar sound are prohibited.
- 4-1-2.General cautions needed for additional wiring or alteration1)The wires to be used

Use the wires equivalent to KS C 3311 (Low pressure wires for vehicle) and JASO D 608 (Heat resisting low pressure wires for vehicle), and the vinyl tapes equivalent to KS C 2306 (Vinyl adhesive tape for electric insulation).

2)How to wire

- (1)Always pass wires along rear bodies, frames, etc. and do not let them hang free in the air.
- (2)All wires should be securely clamped to prevent them from coming in contact with moving parts, vibrating parts and sharp corners on the chassis and fittings. Maintain the following clearance.

Region	Clearance
The clearance between moving	When they were closest : more than 25mm
and wiring	
The clearance between sharp	Minimum clearance : more than 25mm
and wiring	

- (3)Use grommets whenever penetrating steel plates to prevent electric shorts due to covering damage.
- (4)Add clamps to the place where wires can come in contact with the edges of metal parts or insert the protectors into the edges to prevent covering damage due to moving contact.

Fig 4-1-1

(5)Tape wiring together with chassis harnesses, if any nearby. Wires should never pass along brake pipes (Including brake hoses), fuel pipes (Including metal sheets, rubber hoses, etc.) and grease pipes. Clearance should be as follows.

Method of wiring	Clearance			
Parallel	More than 10mm			
Crossing	More than 20mm			

- (6)The clearance between electric wires and the parts of exhaust system should conform to the page 3-1-5-3 'Clearance between exhaust system and other components'.
- (7)Wires should never pass along the place where there are misgivings that harnesses or cables are damaged due to mud, accumulation of snow and the like, freezing and flying stones.
- (8)Connecting electrical wires of peeled covering is prohibited with respect to safety.
- (9)When passing wires along device or equipment, since there are misgivings that waters enter into the inside, seal them securely with grommets and the like. Maintain the terminal of each wire upward.
- (10)Always do not pass wires along water or polluted places.
- (11)Always do not pass wires along the upper face and outside of frames to prevent damage due to flying stones.
- (12)When modifying the wires of the battery cables due to moving of battery, do not extend or shorten the battery cables and discharging circuits of alternator and the like. Especially do not modify clamping, location and slack of wiring connected to components movable relatively to each other between the starter and the frame.
- (13)Wires should be placed more than 200mm away from exhaust system such as tail pipes and mufflers. If otherwise,

provide a heat insulator.

(14)When extending wires, use wires with the same cross sectional area and color as the original wires. Connections should be made secure by soldering or press terminals and completely insulated by coverings. Also never make connections by twisting the ends of the wires. Especially when extending electrical wires of chassis harnesses (Whole harnesses of the cab outside), waterproof and insulation of connections should be made secure.

For example, followings shows the method by the adhesive heat shrinkage tube.

- When using DURACELL tube

LATTER THE ELECTRIC IIN carry out 8mm, it assembles like a figure Compression use the **3** press punch

 After compression, heating use the heating tools

Fig 4-1-2

Use exclusive press punch and heating tools.

- When using MVT tube

- It does compress or soldering 2 after the electric line carries out and the tube insertes that Fig 4-1-3
- After the tube inserts the middle of joint section, it heats by the heating tools

Use exclusive heating tools.

- (15)In due consideration of cutting off wires, the spare length to be cut off should be clamped to the harnesses already installed with vinyl tape.
- (16)The SWP waterproof connectors such as the license lamp, side turn signal lamp and the like should be fastened with hook type resin or band clips.

Fig 4-1-4

(17)When wiring inside the engine compartment, wires should pass directly along with the chassis harnesses already installed. They should be clamped with vinyl tape, wrapped up widely with thin metal sheets (rubber or vinyl coated).

Do not use weak vinyl tape that could soon fall off due to engine heat

- (18)Wires connecting engine and transmission components should be run along the harnesses already installed so as to allow them to absorb relative motions. Also, give them proper slack so as to keep them from contacting other components.
- (19)Clip

①Use coating tapes or protective rubber when clamping

Fig 4-1-5

②Clamp intervals of wirings are given below as stand.

HARNESS	CLAMP CLEARANCE
less than Φ5	less than 350mm
Φ5 ~ Φ10	350mm
Φ10 ~ Φ20	350mm

*Clamp clearance of wiring near rounded area is 100~200mm
③Use rubber clamp near moving parts such as dump hinges or the like on the fittings and vibrating parts like engine and transmission.

4-1-3. Earth

1)Earth of increase power source should be the circuit connected to minus (-) terminal of battery by all means. Also, when earthing to frames, use masking parts and the paint removed parts. But, do not earth together with the bolts already installed .

2)Use ring in earth , assemble it securely together with tooth washer.

4-1-4. Fuse

1)Since in due consideration of use load and frequency, the fuse with optimum capacity has been already installed on chassis, when adding electrical components, do not install the parts giving wrong signals to power source and earth line on chassis and do not lay harness wires.

Power supplies for installation related components and lamps should be taken out of fuse or connectors.

2)Do not add wires to the already installed wiring and in order to prevent a fire due to an excessive current draw, do not increase capacity by modifying the fuses on the fuse box.

4-2. Cautions in installing electrical equipment

When installing bodies with electronic control system, be sure to observe the instructions below

4-2-1. Sort of electronic control system

- 1) Electronic governor
- 2) Electronic timer
- 3) ABS
- 4) ASR
- 5) EGS (Electric Gear Shift)
- 6) Power steering
- 7) Distance Warning System
- 8) Electronic Controlled Auto T/M
- 9) Retarder Control

4-2-2. Cautions in installing electrical equipment

Since using electrical components such as sensors, control units, actuators and the like in electronic controlled vehicles and the multipole connectors which are suitable for weak current of electronic circuit, pay attention to the instructions described in below

- 1)Do not eliminate or add connectors unnecessarily, which causes deformation and damage of terminals resulting in insufficient connection.
- 2)Eliminate connectors together with housing by all means.

Pulling electric wires forcibly or pulling them with them twisted deforming terminals are prohibited.

- 3)When eliminating connectors, do not stain terminals with water, oil and dust causing insufficient connection or unstable current flow.
- 4)After the work, assemble connector securely. Also, when eliminating harness, attach it to the original position securely after servicing.
- 5)Use electrical components such as relays, solenoid valves, motors, etc., which include only noise absorbing elements like diode, veristar, etc.

4-3. Size of electric wire and permitted current

4-3-1. Sort of electric wire

Select by the following table.

a kind of electric wire	using place
AVSS wire	General
vinyl insulated a low voltage cable for vehicle	
AVX wire	
bridge-building heat-resistant a low voltage cable for vehicle	This cable uses of a highly temperature region
AEX wire	; engine circumference,
bridge-building polyethylene heat-resistant a low voltage cable for vehicle	etc.

4-3-2. Size of electric wire

Select by the following table.

nominal		allow	able curre	nt(A)
section	wire number/wire diameter(mm)	AVSS	AVX	AEX
area		wire	wire	wire
0.5f	20/0.18	8	7	7
0.5	7/0.32	9	8	8
0.85	11/0.32	11	10	10
1.25f	50/0.18	14	13	13
1.25	16/0.32	14	14	13
2	26/0.32	20	18	18
3	41/0.32	27	25	25
5	65/0.32	36	34	33
8	50/0.32	47	44	43

※ f ∶ flexible

Use the flexible wire in moving & vibrating places such as T/M, Engine, Dump Hinge, Cab ~ Chassis etc.

4-3-3. Method of indicating an electric wire and connector1)Wire size, Method of indicating color

(1)Method of indicating

Symbol of wire color

Symbol	Wire color	Symbol	Wire color
W	WHITE	L	BLUE
В	BLACK	Br	BROWN
R	RED	Lg	LIGHT GREEN
Y	YELLOW	0	ORANGE
G	GREEN		

(2)Example of indication

HYUNDAI TRUCK BODY BUILDER BOOK (HD65 / HD72 / HD78 TRUCK)

HYUNDAI MOTOR COMPANY

COMMERCIAL VEHICLE ENGINEERING & RESEARCH CENTER

INDEX 🖘

1. IDENTIFICATION CODE

2. GENERAL SPECIFICATION

3. EXTERIOR DRAWING OF THE COMPLETE VEHICLE

4. ENGINE PERFORMANCE CURVE

5. CAUTIONS REGARDING INSTALLATION, MODIFICATION OR ALTERATION

- 5-1. Cautions needed for the front structure of the rear body
- 5-2. Cautions needed for the fastening U-bolt
- 5-3. Noise prevention parts

6. WEIGHT AND FRAME INFORMATION

- 6-1. Permissible weight
- 6-2. Side frame material and main section

7. P.T.O CONTROL

- 7-1. Transmission P.T.0
- 7-2. Dump control lever

8. EXTERIOR DRAWING OF THE CAB

9. CHASSIS CAB DRAWING

10. CAUTIONS NEEDED FOR THE INSTALLATION OF THE PROPELLAR SHAFT

11. OTHERS

11-1. Fuel tank

1. IDENTIFICATION CODE

1. IDENTIFICATION CODE

1	2	3	(4)	5	6	7
MODEL	VEHICLE TYPE	CAB	WHEEL BASE		ENGINE	SERIAL NO.
65	CARGO : C	· NARROW CAB : N	LONG : L	HIGH DECK : H	D4AF : F	
72	DUMP : D	· WIDE CAB	SHORT : S	LOW DECK : L	D4AL : L	
78		- STD CAB : S			D4DB : B	
		- SUPER CAB : P			D4DB-d : Bd	
		- DOUBLE CAB : D			D4DC : C	
					D4DD : D	

EX) HD65 WIDE SUPER LONG CARGO LOW DECK : HD65CP - LLF

2. GENERAL SPECIFICATION

2. GENERAL SPECIFICATION

			WIDE CAB					
			HD65 STADARD CAB					
					HIGH DECK SHORT			
			HD65CS-SHF	HD65CS-SHL	HD65CS-SHBd	HD65CS-SHC	HD65CS-SHD	
0.	A. L	mm	5,200	←	←	\leftarrow	5,275	
0.	A. W	mm	2,030	←	←	←	←	
0.	Α. Η	mm	2,335	←	←	←	←	
	LENTH	mm	3,410	←	←	←	←	
BODY	WIDTH	mm	1,920	←	←	\leftarrow	\leftarrow	
INSIDE	HEIGHT	mm	380	←	←	~	←	
DEC	K OFFSET	mm	385	←	←	\leftarrow	←	
WHI	EEL BASE	mm	2,750	←	←	\leftarrow	2,780	
WHEEL	FRT	mm	1,665	←	←	~	1,680	
TREAD	RR	mm	1,495	←	←	~	<i>←</i>	
OVER	FRT	mm	1,075	←	←	~	1,120	
HANG	RR	mm	1,375	←	←	~	<i>←</i>	
KERB WT	FRT	kg	1,575	1,605	1,625	1,605	1,665	
	RR	kg	1,120	1,140	1,140	1,140	1,180	
	TTL	kg	2,695	2,745	2,765	2,745	2,845	
G.V.W	FRT	kg	2,110	2,140	2,160	2,140	2,200	
	RR	kg	3,280	3,300	3,300	3,300	3,340	
	TTL	kg	5,390	5,440	5,460	5,440	5,540	
	MODEL		D4AF	D4AL	D4DB-d	D4DC	D4DD	
ENGINE	ASPIRAT	ION	NA	TCI	TCI	NA	TCI	
	DISPLACEMENT	СС	3.6 <i>l</i>	3.3 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	
	OUTPUT	ps	96	120	105	105	140	
	TORQUE	kgm	24	30	29	27	38	
PERFOR-	MAX.SPD	km/h	103	112	107	107	122	
MANCE	MAX.GRD	t an O	0.385	0.416	0.4	0.374	0.436	
	T/RAD	m	5.0	←	←	←	←	
	MODEL		M2S5	M3S5	←	←	M035S5	
		1st	5.494	5.181	←	←	5.380	
Т / М	GEAR	2nd	2.836	2.865	←	←	3.208	
	RATIO	3rd	1.592	1.593	←	←	1.700	
		4th	1.000	1.000	←	~	1.000	
		5th	0.746	0.739	←	~	0.722	
		6th	-	_	←	~	-	
		7th	_	_	<i>←</i>	←	_	
		REV	5.494	5.181	←	<i>~</i>	5.380	
R/AXLE	MODEL		D2H	D3H	←	<i>←</i>	DЗH	
	RATIO		6.666	6.166	←	<i>←</i>	5.000	
TIRE	FRT		7.00R16-10PR	<i>←</i>	←	<i>←</i>	<i>←</i>	
	RR		7.00R16-10PR	←	←	\leftarrow	←	

\sim		WIDE CAB						
			HD65 STADARD CAB					
			HIGH DECK LONG					
			HD65CS-LHF	HD65CS-LHL	HD65CS-LHBd	HD65CS-LHC	HD65CS-LHD	
0.	A. L	mm	6,130	~	←	~	6,175	
0.	A. W	mm	2,030	←	←	←	←	
0.	А. Н	mm	2,325	←	←	←	←	
	LENTH	mm	4,350	←	←	←	4,310	
BODY	WIDTH	mm	1,920	←	←	←	←	
INSIDE	HEIGHT	mm	380	\leftarrow	←	\leftarrow	←	
DEC	K OFFSET	mm	560	\leftarrow	←	\leftarrow	530	
WHE	EEL BASE	mm	3,375	\leftarrow	←	\leftarrow	←	
WHEEL	FRT	mm	1,665	\leftarrow	←	\leftarrow	1,680	
TREAD	RR	mm	1,495	~	<i>←</i>	~	←	
OVER	FRT	mm	1,075	\leftarrow	←	\leftarrow	1,120	
HANG	RR	mm	1,680	\leftarrow	←	\leftarrow	1,680	
KERB WT	FRT	kg	1,590	1,620	1,640	1,620	1,680	
	RR	kg	1,180	1,200	1,200	1,200	1,240	
	TTL	kg	2,770	2,820	2,840	2,820	2,920	
G.V.W	FRT	kg	2,190	2,220	2,240	2,220	2,280	
	RR	kg	3,270	3,290	3,290	3,290	3,330	
	TTL	kg	5,460	5,510	5,530	5,510	5,610	
	MODEL	-	D4AF	D4AL	D4DB-d	D4DC	D4DD	
ENGINE	ASPIRAT	I ON	NA	TCI	TCI	NA	TCI	
	DISPLACEMENT	СС	3.6 <i>l</i>	3.3 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	
	OUTPUT	ps	96	120	105	105	140	
	TORQUE	kgm	24	30	29	27	38	
PERF0R-	MAX.SPD	km/h	103	112	107	107	122	
MANCE	MAX.GRD	t an O	0.379	0.411	0.395	0.369	0.431	
	T/RAD	m	6.0	\leftarrow	<i>←</i>	\leftarrow	<i>←</i>	
	MODEL	-	M2S5	M3S5	<i>←</i>	\leftarrow	M035S5	
		1st	5.494	5.181	<i>←</i>	\leftarrow	5.380	
Т/М	GEAR	2nd	2.836	2.865	<i>←</i>	\leftarrow	3.208	
	RATIO	3rd	1.592	1.593	<i>←</i>	\leftarrow	1.700	
		4th	1.000	1.000	<i>←</i>	~	1.000	
		5th	0.746	0.739	<i>←</i>	~	0.722	
		6th	_		←	~	-	
		7th	-	_	<i>←</i>	~	-	
		REV	5.494	5.181	<i>←</i>	~	5.380	
R/AXLE	MODEL	-	D2H	D3H	←	~	D3H	
	RATIC)	6.666	6.166	←	~	5.000	
TIRE	FRT		7.00R16-10PR	~	←	~	←	
	RR		7.00R16-10PR	\leftarrow	←	\leftarrow	←	

WIDE CAB								
			HD65 SUPER CAB					
			HIGH DECK LONG					
			HD65CP-LHF	HD65CP-LHL	HD65CP-LHBd	HD65CP-LHC	HD65CP-LHD	
0.	A. L	mm	6,420	\leftarrow	←	\leftarrow	6,465	
0.	A. W	mm	2,030	\leftarrow	←	\leftarrow	←	
0.	Α. Η	mm	2,335	\leftarrow	←	\leftarrow	←	
	LENTH	mm	4,350	\leftarrow	←	\leftarrow	4,340	
BODY	WIDTH	mm	1,920	\leftarrow	←	\leftarrow	←	
INSIDE	HEIGHT	mm	380	\leftarrow	←	\leftarrow	←	
DEC	K OFFSET	mm	455	\leftarrow	←	\leftarrow	440	
WHE	EEL BASE	mm	3,570	\leftarrow	←	\leftarrow	←	
WHEEL	FRT	mm	1,665	\leftarrow	←	\leftarrow	1,680	
TREAD	RR	mm	1,495	\leftarrow	←	\leftarrow	~	
OVER	FRT	mm	1,075	\leftarrow	←	\leftarrow	←	
HANG	RR	mm	1,775	\leftarrow	←	\leftarrow	←	
KERB WT	FRT	kg	1,615	1,645	1,665	1,645	1,705	
	RR	kg	1,210	1,230	1,230	1,230	1,270	
	TTL	kg	2,825	2,875	2,895	2,875	2,975	
G.V.W	FRT	kg	2,120	2,150	2,170	2,150	2,210	
	RR	kg	3,400	3,420	3,420	3,420	3,460	
	TTL	kg	5,520	5,570	5,590	5,570	5,670	
	MODEL	-	D4AF	D4AL	D4DB-d	D4DC	D4DD	
ENGINE	ASPIRAT	I ON	NA	TCI	TCI	NA	TCI	
	DISPLACEMENT	СС	3.6 <i>l</i>	3.3 l	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	
	OUTPUT	ps	96	120	105	105	140	
	TORQUE	kgm	24	30	29	27	38	
PERFOR-	MAX.SPD	km/h	103	112	107	107	122	
MANCE	MAX.GRD	t an O	0.375	0.406	0.391	0.365	0.426	
	T/RAD	m	6.5	←	←	←	←	
	MODEL	-	M2S5	M3S5	←	\leftarrow	M035S5	
		1st	5.494	5.181	←	\leftarrow	5.380	
Т/М	GEAR	2nd	2.836	2.865	←	\leftarrow	3.208	
	RATIO	3rd	1.592	1.593	←	\leftarrow	1.700	
		4th	1.000	1.000	←	\leftarrow	1.000	
		5th	0.746	0.739	←	\leftarrow	0.722	
		6th	-	-	←	\leftarrow	-	
		7th	-	_	<i>←</i>	<i>~</i>	-	
		REV	5.494	5.181	<i>←</i>	~	5.380	
R/AXLE	MODEL	-	D2H	D3H	<i>←</i>	<i>←</i>	D3H	
	RATIC)	6.666	6.166	<i>←</i>	<i>←</i>	5.000	
TIRE	FRT		7.00R16-10PR	<i>←</i>	<i>←</i>	<i>←</i>	←	
	RR		7.00R16-10PR	\leftarrow	←	\leftarrow	←	

\sim					WIDE CAB		
			HD65 DOUBLE				
			HIGH DECK LONG				
			HD65CD-LHF	HD65CD-LHL			
0.	A. L	mm	6,130	←			
0.	A. W	mm	2,030	←			
0.	Α. Η	mm	2,325	←			
	LENTH	mm	4,350	←			
BODY	WIDTH	mm	1,920	←			
INSIDE	HEIGHT	mm	380	←			
DEC	K OFFSET	mm	60	←			
WHE	EEL BASE	mm	3,375	←			
WHEEL	FRT	mm	1,665	←			
TREAD	RR	mm	1,495	←			
OVER	FRT	mm	1,075	←			
HANG	RR	mm	1,680	←			
KERB WT	FRT	kg	1,645	1,675			
	RR	kg	1,235	1,255			
	TTL	kg	2,880	2,930			
G.V.W	FRT	kg	2,045	2,075			
	RR	kg	3,790	3,810			
	TTL	kg	5,835	5,885			
	MODEL	-	D4AF	D4AL			
ENGINE	ASPIRAT	I ON	NA	TCI			
	DISPLACEMENT	СС	3.6 <i>l</i>	3.3 <i>l</i>			
	OUTPUT	ps	96	120			
	TORQUE	kgM	24	30			
PERFOR-	MAX.SPD	km/h	102	112			
MANCE	MAX.GRD	t an O	0.354	0.384			
	T/RAD	m	6.0	←			
	MODEL	-	M2S5	M3S5			
		1st	5.494	5.181			
Т/М	GEAR	2nd	2.836	2.865			
	RATIO	3rd	1.592	1.593			
		4th	1.000	1.000			
		5th	0.746	0.739			
		6th	_	_			
		7th		_			
		REV	5.494	5.181			
R/AXLE	MODEL		D2H	D3H			
	RATIC)	6.666	6.166			
TIRE	FRT		7.00R16-10PR	~			
	RR		7.00R16-10PR	←			

\sim		WIDE CAB						
			HD72 STADARD CAB					
			HIGH DECK SHORT					
			HD72CS-SHL	HD72CS-SHA	HD72CS-SHB	HD72CS-SHC	HD72CS-SHD	
0.	A. L	mm	5,200	←	←	←	5,275	
0.	A. W	mm	2,030	←	←	←	<i>←</i>	
0.	Α. Η	mm	2,355	←	←	←	←	
	LENTH	mm	3,140	←	←	←	3,410	
BODY	WIDTH	mm	1,920	←	←	←	←	
INSIDE	HEIGHT	mm	380	\leftarrow	←	←	←	
DEC	K OFFSET	mm	385	←	←	←	←	
WHE	EEL BASE	mm	2,750	←	←	←	2,780	
WHEEL	FRT	mm	1,650	←	←	←	1,667	
TREAD	RR	mm	1,495	←	←	←	←	
OVER	FRT	mm	1,075	←	←	←	1,120	
HANG	RR	mm	1,375	←	←	←	←	
KERB WT	FRT	kg	1,620	1,655	1,655	1,620	1,685	
	RR	kg	1,280	1,300	1,300	1,280	1,320	
	TTL	kg	2,900	2,955	2,955	2,900	3,005	
G.V.W	FRT	kg	2,295	2,330	2,330	2,295	2,360	
	RR	kg	4,300	4,320	4,320	4,300	4,340	
	TTL	kg	6,595	6,650	6,650	6,595	6,700	
	MODEL		D4AL	D4DA	D4DB	D4DC	D4DD	
ENGINE	ASPIRAT	I ON	TCI	TCI	TCI	NA	TCI	
	DISPLACEMENT	сс	3.3 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	
	OUTPUT	ps	120	155	130	105	140	
	TORQUE	kgm	30	38	37	27	38	
PERFOR-	MAX.SPD	km/h	107	129	122	102	116	
MANCE	MAX.GRD	t an O	0.359	0.382	0.372	0.322	0.379	
	T/RAD	m	5.2	<i>←</i>	~	~	←	
	MODEL		M3S5	M035S5	~	M3S5	M035S5	
		1st	5.181	5.380	←	5.181	5.380	
Т/М	GEAR	2nd	2.865	3.028	←	2.865	3.208	
	RATIO	3rd	1.593	1.700	←	1.593	1.700	
		4th	1.000	1.000	←	1.000	1.000	
		5th	0.739	0.722	←	0.739	0.722	
		6th	_	-	←	-	-	
		7th		-	~	-	-	
		REV	5.181	5.380	~	5.181	5.380	
R/AXLE	MODEL		D3H	D033H	~	D3H	D033H	
	RATIC		6.666	5.428	~	6.666	5.428	
TIRE	FRT		7.50R16-14PR	←	~	←	←	
	RR		7.50R16-14PR	←	←	←	←	

			WIDE CAB					
			HD72 STANDARD CAB					
			HIGH DECK LONG					
			HD72CS-LHL	HD72CS-LHA	HD72CS-LHB	HD72CS-LHC	HD72CS-LHD	
0.	A. L	mm	6,670	\leftarrow	←	←	6,715	
O.A.W mm		2,170	\leftarrow	←	←	←		
0. A. H		mm	2,355	←	←	←	←	
	LENTH	mm	4,880	\leftarrow	←	←	←	
BODY	WIDTH	mm	2,060	\leftarrow	←	←	←	
INSIDE	HEIGHT	mm	380	\leftarrow	←	←	←	
DEC	K OFFSET	mm	635	\leftarrow	←	←	←	
WHE	EEL BASE	mm	3,735	\leftarrow	←	←	←	
WHEEL	FRT	mm	1,650	\leftarrow	←	←	1,667	
TREAD	RR	mm	1,495	\leftarrow	←	←	←	
OVER	FRT	mm	1,075	\leftarrow	←	←	1,120	
HANG	RR	mm	1,860	\leftarrow	←	←	←	
KERB WT	FRT	kg	1,695	1,730	1,730	1,695	1,760	
	RR	kg	1,365	1,385	1,385	1,365	1,405	
	TTL	kg	3,060	3,115	3,115	3,060	3,165	
G.V.W	FRT	kg	2,480	2,515	2,515	2,480	2,545	
	RR	kg	4,280	4,300	4,300	4,280	4,320	
	TTL	kg	6,760	6,815	6,815	6,760	6,865	
	MODEL	-	D4AL	D4DA	D4DB	D4DC	D4DD	
ENGINE	ASPIRAT	ION	TCI	TCI	TCI	NA	TCI	
	DISPLACEMENT	СС	3.3 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	
	OUTPUT	ps	120	155	130	105	140	
	TORQUE	kgm	30	38	37	27	38	
PERFOR-	MAX.SPD	km/h	107.0	129.0	121.6	102.6	116.1	
MANCE	MAX.GRD	t an Ə	0.350	0.373	0.362	0.314	0.370	
	T/RAD	m	7.0	←	←	←	←	
	MODEL	-	M3S5	M035S5	<i>←</i>	M3S5	M035S5	
		1st	5.181	5.380	<i>←</i>	5.181	5.380	
Т/М	GEAR	2nd	2.865	3.028	<i>←</i>	2.865	3.208	
	RATIO	3rd	1.593	1.700	<i>←</i>	1.593	1.700	
		4th	1.000	1.000	←	1.000	1.000	
		5th	0.739	0.722	←	0.739	0.722	
		6th	_	-	<i>←</i>	_	_	
		7th	_	-	←	_	_	
		REV	5.181	5.380	<i>←</i>	5.181	5.380	
R/AXLE	MODEL	-	D3H	D033H	<i>←</i>	D3H	D033H	
	RATIC)	6.666	5.428	<i>←</i>	6.666	5.428	
TIRE	FRT		7.50R16-12PR	<i>←</i>	<i>←</i>	<i>←</i>	<i>←</i>	
	RR		7.50R16-12PR	\leftarrow	←	←	←	

			WIDE CAB					
			HD72 SUPER CAB					
			HIGH DECK LONG					
			HD72CP-LHL	HD72CP-LHA	HD72CP-LHB	HD72CP-LHC	HD72CP-LHD	
0.	A. L	mm	6,670	\leftarrow	←	←	6,715	
O.A.W mm		2,170	\leftarrow	←	←	←		
0. A. H		mm	2,355	←	←	←	←	
	LENTH	mm	4,580	\leftarrow	←	←	←	
BODY	WIDTH	mm	2,060	\leftarrow	←	←	←	
INSIDE	HEIGHT	mm	380	\leftarrow	←	←	←	
DEC	K OFFSET	mm	485	\leftarrow	←	←	←	
WHE	EEL BASE	mm	3,735	\leftarrow	←	←	←	
WHEEL	FRT	mm	1,650	\leftarrow	←	←	1,667	
TREAD	RR	mm	1,495	\leftarrow	←	<i>←</i>	←	
OVER	FRT	mm	1,075	\leftarrow	←	←	1,120	
HANG	RR	mm	1,860	\leftarrow	←	←	←	
KERB WT	FRT	kg	1,665	1,700	1,700	1,665	1,730	
	RR	kg	1,390	1,410	1,410	1,390	1,430	
	TTL	kg	3,055	3,110	3,110	3,055	3,160	
G.V.W	FRT	kg	2,305	2,340	2,340	2,305	2,370	
	RR	kg	4,440	4,460	4,460	4,440	4,480	
	TTL	kg	6,745	6,800	6,800	6,745	6,850	
	MODEL	-	D4AL	D4DA	D4DB	D4DC	D4DD	
ENGINE	ASPIRAT	ION	TCI	TCI	TCI	NA	TCI	
	DISPLACEMENT	СС	3.3 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	
	OUTPUT	ps	120	155	130	105	140	
	TORQUE	kgm	30	38	37	27	38	
PERF0R-	MAX.SPD	km/h	107.0	129.0	121.6	102.6	116.1	
MANCE	MAX.GRD	t an O	0.351	0.373	0.363	0.315	0.371	
	T/RAD	m	7.0	\leftarrow	←	←	<i>←</i>	
	MODEL	-	M3S5	M035S5	←	M3S5	M035S5	
		1st	5.181	5.380	←	5.181	5.380	
Т/М	GEAR	2nd	2.865	3.028	←	2.865	3.208	
	RATIO	3rd	1.593	1.700	←	1.593	1.700	
		4th	1.000	1.000	←	1.000	1.000	
		5th	0.739	0.722	←	0.739	0.722	
		6th	_	-	←	-	_	
		7th	_	-	←	_	_	
		REV	5.181	5.380	<i>←</i>	5.181	5.380	
R/AXLE	MODEL	-	D3H	D033H	<i>←</i>	D3H	D033H	
	RATIC)	6.666	5.428	<i>←</i>	6.666	5.428	
TIRE	FRT		7.50R16-12PR	<i>~</i>	<i>←</i>	<i>←</i>	<i>←</i>	
	RR		7.50R16-12PR	\leftarrow	←	←	←	

			WIDE CAB					
			HD78 STANDARD CAB					
			HIGH DECK LONG					
			HD78CS-LHA	HD78CS-LHB	HD78CS-LHC	HD78CS-LHD		
0.	A. L	mm	6,670	←	←	6,715		
0.	A. W	mm	2,170	←	←	←		
0. A. H mm		mm	2,355	←	←	←		
	LENTH	mm	4,880	←	←	\leftarrow		
BODY	WIDTH	mm	2,060	←	←	\leftarrow		
INSIDE	HEIGHT	mm	380	←	←	~		
DEC	K OFFSET	mm	635	\leftarrow	\leftarrow	\leftarrow		
WHE	EL BASE	mm	3,735	←	←	~		
WHEEL	FRT	mm	1,650	←	←	1,667		
TREAD	RR	mm	1,495	←	←	←		
OVER	FRT	mm	1,075	←	←	1,120		
HANG	RR	mm	1,860	<i>←</i>	←	<i>←</i>		
KERB WT	FRT	kg	1,730	1,760	1,695	1,760		
	RR	kg	1,385	1,395	1,365	1,405		
	TTL	kg	3,115	3,155	3,060	3,165		
G.V.W	FRT	kg	2,515	2,560	2,480	2,545		
	RR	kg	4,300	4,390	4,280	4,320		
	TTL	kg	6,815	6,950	6,760	6,865		
	MODEL		D4DA	D4DB	D4DC	D4DD		
ENGINE	ENGINE ASPIRATION		TCI	TCI	NA	TCI		
	DISPLACEMENT	СС	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>	3.9 <i>l</i>		
	OUTPUT	ps	155	130	105	140		
	TORQUE	kgm	38	37	27	38		
PERFOR-	MAX.SPD	km/h	131	129	111	116		
MANCE	MAX.GRD	t an O	0.358	0.355	0.301	0.356		
	T/RAD	m	7.0	<i>←</i>	<i>←</i>	<i>←</i>		
	MODEL		M035S5	<i>←</i>	M3S5	M035S5		
		1st	5.380	<i>←</i>	5.181	5.380		
Т/М	GEAR	2nd	3.208	<i>←</i>	2.865	3.208		
	RATIO	3rd	1.700	<i>←</i>	1.593	1.700		
		4th	1.000	<i>←</i>	1.000	1.000		
		5th	0.722	<i>←</i>	0.739	0.722		
		6th	-	<i>←</i>	-	-		
		7th	_	<i>←</i>	-	_		
		REV	5.300	<i>←</i>	5.181	5.300		
R/AXLE	MODEL		D033H	<i>←</i>	D3H	D033H		
	RATIC		5.428	<i>←</i>	6.166	5.428		
TIRE	FRT		7.50R16-12PR	<i>←</i>	<i>←</i>	<i>←</i>		
RR		7.50R16-12PR	\leftarrow	←	\leftarrow			

			NARROW CAB					
			HD65 STADARD CAB					
			HIGH DEC	CK SHORT	HIGH DECK LONG			
			HD65CN-SHF	HD65CN-SHL	HD65CN-LHF	HD65CN-LHL		
0.	A. L	mm	4,940	←	6,120	←		
0.	A. W	mm	1,900	←	←	←		
0.	Α. Η	mm	2,275	←	2,275	←		
	LENTH	mm	3,110	←	4,350	←		
BODY	WIDTH	mm	1,790	←	←	\leftarrow		
INSIDE	HEIGHT	mm	380	←	←	\leftarrow		
DEC	K OFFSET	mm	335	←	560	\leftarrow		
WHE	EEL BASE	mm	2,550	←	3,375	3,375		
WHEEL	FRT	mm	1,475	←	←	←		
TREAD	RR	mm	1,435	←	←	←		
OVER	FRT	mm	1,075	←	←	\leftarrow		
HANG	RR	mm	1,270	1,670	1,680	1,670		
KERB WT	FRT	kg	1,500	1,530	1,540	1,570		
	RR	kg	1,090	1,100	1,180	1,190		
	TTL	kg	2,590	2,630	2,720	2,760		
G.V.W	FRT	kg	2,015	2,045	2,140	2,170		
	RR	kg	3,270	3,280	3,275	3,285		
	TTL	kg	5,285	5,325	5,415	5,455		
	MODEL		D4AF	D4AL	D4AF	D4AL		
ENGINE	ASPIRAT	I ON	NA	TCI	NA	TCI		
	DISPLACEMENT	СС	3.6 <i>l</i>	3.3 <i>l</i>	3.6 <i>l</i>	3.3 <i>l</i>		
	OUTPUT	ps	96	120	96	120		
	TORQUE	kgM	24	30	24	30		
PERFOR-	MAX.SPD	km/h	103	121	103	121		
MANCE	MAX.GRD	t an O	0.392	0.393	0.383	0.384		
	T/RAD	m	5.4	←	6.8	←		
	MODEL		M2S5	M3S5	M2S5	M3S5		
		1st	5.494	5.181	5.494	5.181		
T / M	GEAR	2nd	2.836	2.865	2.836	2.865		
	RATIO	3rd	1.592	1.593	1.592	1.593		
		4th	1.000	1.000	1.000	1.000		
		5th	0.746	0.739	0.746	0.739		
		6th	_	-	-	-		
		7th	-	-	-			
		REV	5.494	5.181	5.494	5.181		
R/AXLE	MODEL		D2H	D3H	D2H	D3H		
	RATIC)	6.666	5.714	6.666	5.714		
TIRE	FRT		7.00R16-10PR	<i>←</i>	<i>←</i>	<i>←</i>		
RR		7.00R16-10PR	←	←	←			

3. EXTERIOR DRAWING OF THE COMPLETE VEHICLE

W.B:2750mm

SHORT(D4AF/AL/DB-d/DC) STD CARGO TRUCK HD65

W.B:2780mm

HD65 SHORT(D4DD) STD CARGO TRUCK

4 M

250 250 260

145

70

φ

 \bigcirc

 \bigcirc

đ

(--

+1

086 028

 \oplus

-<u>095</u> 566 1390 1667

W.B:2780mm

HD72 SHORT(D4DD) STD CARGO TRUCK

4. ENGINE PERFORMANCE CURVE

1) D4AF

2) D4AL

3) D4DA

4) D4DD

5. CAUTIONS REGARDING INSTALLATION MODIFICATION OR ALTERATION

5-1. Cautions needed for the front structure of the rear body

The structure of the front area of the rear body in relation to front wheel tires, exhaust pipe, cab and intake duct should be installed carefully as the followings.

(1) Move of the cab and the intake duct

In case of applying the floating cab mountaing, be free from interference with the cab and the intake duct. Make reference to the reference drawing for the moving range of the cab and the intake duct.

(2) Sub frame

As the forward area of the sub frame is near exhaust pipe, be careful not to take fire by adding a protector to the outside of the sub frame. Also the ground clearance of the rear body floor and the height of fender should be more than 50mm from tires. Make reference to BODY BUILDER DRAWING for a rising quantity of tires. If the height of sub frame is low, as strength drops, use the steel sub frame surely in using the sub frame less than standard height. Make reference to the paragraph 2-2-4, COMMON BOOK of BODY BUILDER BOOK for dimension of the steel frame.

- (3) Projecting relation of the upper side of transmission and chassis frame As harness connector and the sensor of gear shift unit are on the upper side of transmission, be free from ascending the upper side of transmission.
- (4) Object for stain prevention between cab and rear body Install a object for stain prevention between cab and rear body figure to prevent stain by front forward wheels as the appendix drawing.
- (5) Front and rear wheel fender

Make reference to the appendix drawing for the height of fender and mudguard. Also make reference to the paragraph 2-2-5, COMMON BOOK of BODY BUILDER BOOK. *) MOVE OF THE CAB & THE INTAKE DUCT (D4AF/D4AL/D4DA/D4DB/D4DB-d/D4DC)

	WIDE	NARROW	
	STANDARD	SUPER	CAB
'A'	1925	2139	1925

	WIDE	NARROW	
	STANDARD		CAB
'A'	1940	2170	1925

1) REFERENCE DRAWING OF MUD GUARD

(WIDE CAB :D4AF/D4AL/D4DA/D4DB/D4DB-d/D4DC)

(WIDE CAB : D4DD)

(NARROW CAB : D4AF/D4AL)

5-2. CAUTIONS NEEDED FOR FASTENING 'U-BOLT'

In case of fastening U-bolt between the cab rear and No.2 cross member, refer to the appendix drawing of U-bolt installation.

WIDE STD CAB(HD*CS-D4AF/D4AL/D4DA/D4DB/D4DB-d/D4DC)

 \cap

 \bigcirc

Ĭ

 \square

WIDE STD CAB(HD*CS-D4DD)

WIDE SUPER CAB(HD*DP-D4AF/D4AL/D4DA/D4DB/D4DB-d/D4DC)

WIDE SUPER CAB(HD*DP-D4DD)

NARROW CAB(HD*CN-D4AF/D4AL)

5-3. NOISE PREVENTION PARTS

Don't modify or alterate noise prevention parts, which conform to the noise regulations. But in an unavoidable case, please contact with HMC. Also in case detaching noise prevention parts when installing or modifying them, be sure to install them as ever again after finishing installation or modification.

Position describing drawing of noise prevention parts.

	PATRS
D4AF	1,2,3,4,5,7
D4AE	1,2,3,4,5,7
D4AL	1,2,3,4,5,6,7,8
D4DA	1,2,3,4,5,6,7,8

NO	NOISE PREVENTION PARTS
1	ENGIND UPPER COVER INSULATOR
2	ENGINE SIDE-UPPER INSULATOR
3	ENGINE SIDE COVER
4	ENGINE UNDER COVER
5	ENGINE REAR COVER
6	T/M UNDER COVER
7	MUFFLER
8	RADIATOR UNDER COVER

6. WEIGHT AND FRAME INFORMATION

6-1. PERMISSIBLE WEIGHT

Permissible weight must not exceed axle and tire capacity.

(1) AXLE CAPACITY

		ENGINE	FRONT(Kg)	REAR(Kg)	REMARKS
WIDE CAB	HD65	D4AF/D4AL D4DB-d/D4DC	2,300	4,100	
		D4DD	2,600	4,400	
	HD72	D4AL/D4DA	2,600	4,700	SHORT WHEEL BASE
		D4DB/D4DC	2,600	4,300	LONG WHEEL BASE
		D4DD	3,100	4,700	
	HD78	D4DA/D4DB D4DC/D4DD	3,100	4,700	
NARROW CAB	HD65	D4AF/D4AL	2,300	4,100	

(2) TIRE SPECIFICATION

		PERMISSIBLE	AIR	EFF.RAD(mm)		
TIRE TYPE	LBS / PSI	WEIGHT	PRESSURE	STATIC	DYNAMIC	OTR
		(Kg)	(Kg/cm²)	RAD.	RAD.	DIA.
6.50-16LT-10PR	(S) 2227 / 78	1010	5.5	354	356	740~
	(D) 2116 / 78	960	5.5	355	357	760
6.50R16LT-10PR	(S) 2227 / 78	1010	5.5	351	353	740~
	(D) 2116 / 78	960	5.5	352	354	760
7.00-16LT-10PR	(S) 2490 / 75	1130	5.25	365	367	766~
	(D) 2370 / 75	1075	5.25	366	368	786
7.00R16LT-10PR	(S) 2535 / 80	1150	5.62	362	372	766~
	(D) 2470 / 80	1120	5.62	363	373	786
195R15LT-12PR	(S) 2447 / 85	1110	5.98	321	333	681~
	(D) 2337 / 85	1060	5.98	322	334	702
7.50-16LT-12PR	(S) 3110 / 90	1410	6.32	381	382	794~
	(D) 2730 / 90	1240	6.32	382	383	816
7.50R16LT-12PR	(S) 3090 / 95	1400	6.68	375	386	794~
	(D) 2730 / 95	1240	6.68	376	387	816
7.50-16LT-14PR	(S) 3329 / 92	1510	6.5	381	382	794~
	(D) 3175 / 92	1440	6.5	382	383	816
8.5R17.5-12PR	(S) 3195 / 89	1450	6.25	374	388	791~
	(D) 3085 / 89	1400	6.25	375	389	813

(S) : SINGLE, (D) : DOUBLE

6-2. FRAME MATERIAL & MAIN SECTION

*NOTE

1)	FRAME MATERIAL	:	HIGH TENSILE PLATE
	TENSION STRENGTH	:	45kg/mm²

- YIELD STRENGTH : 30kg/mm²

7. PTO CONTROL

7. P.T.O CONTROL

7-1. T/M P.T.0

(1) Use of genuine parts P.T.01)Unless otherwise provided for, be sure touse genuine parts.

2)Refer to appendix P.T.O ASSY drawing for details in using power.

- (2) Use P.T.O other than genuine parts A particular reason, when using PTO other than genuine parts, consult with HMC.
- (3) Cautions regarding the propellar shaft driving P.T.O
 - 1)Make sure that an angle of intersection of propellar shaft makes a solid angle be 15. MAX, and also the angle of intersection of the both ends of propellar shaft is the same.
 - 2)As in driving, there is a displacement of about ±10mm(up and down, left and right) from the position of P.T.O outlet, take notice of an allowable angle of intersection of propellar shaft.
 - 3)The direction of P.T.O output shaft is contrary to the direction of engine revolution.
- (4) T/M P.T.O table
 - 1) PTO TYPE : 47110-5H050(M035S5) 47110-DS031A(M2S5,M3S5)
 - 2) TM TYPE : M2S5, M3S5, M035S5
 - 3) TORQUE : 15kg · m/2000rpm
 - 4) TM & PTO RATIO : M2S5 : 43/24 X 36/15 X 13/36
 : M3S5 : 49/29 X 36/15 X 13/36
 : M03S5 : 43/23 X 35/16 X 13/35
 - 5) SHIFT STROKE : 11.5mm
 - 6) ALLOWABLE TORQUE : 850kg · cm
| | А | В |
|-----------|-------|------|
| M2S5/M3S5 | 108.5 | 74.1 |
| M035S5 | 108.1 | 81.7 |

* TRANSMISSION P.T.0

••

Ρ.Τ.Ο ΤΥΡΕ

Т

7-2. DUMP CONTROL LEVER

- VEHICLE : HD65 DUMP HD72 DUMP

8. EXTERIOR DRAWING OF THE CAB

9. EXTERIOR DRAWING OF THE CAB

(WIDE CAB)

(NARROW CAB)

(SUPER CAB, DOUBLE)

(WIDE CAB) - D4DD ENGINE

(SUPER CAB, DOUBLE) - D4DD ENGINE

9. CHASSIS CAB DRAWING

10. CAUTIONS NEEDED FOR THE INSTALLATION OF THE P/SHAFT

10. CAUTOINS NEEDED FOR THE INSTALLATION OF THE PROPELLAR SHAFT

Be sure not to modify or alter propellar shaft, as it was designed to suit a vehicle feature. But in an unavoidable case, observe the following items.

11. OTHERS

EXCEPT HD65CN-S**

HYUNDAI TRUCK BODY BUILDER BOOK (HD120 TRUCK)

2005.6

HYUNDAI MOTOR COMPANY

COMMERCIAL VEHICLE ENGINEERING & RESEARCH CENTER

INDEX S

1. IDENTIFICATION CODE

2.GENERAL SPECIFICATION

3. EXTERIOR DRAWING OF THE COMPLETE VEHICLE

4. ENGINE PERFORMANCE CURVE

5. CAUTIONS REGARDING INSTALLATION, MODIFICATION OR ALTERATION

5-1.Cautions needed for the front structure of the rear body5-2.Cautions needed for the fastening U-bolt5-3.Noise prevention parts5-4.Installation or alteration on the roof

6.WEIGHT AND FRAME INFORMATION

6-1.Permissible weight6-2.Tire specification6-3.Side frame material and main section

7.SUSPENSION CHARACTERISTICS

8.P.T.O CONTROL

8-1.Transmission P.T.0 8-2.Dump and Mixer control lever

9.EXTERIOR DRAWING OF THE CAB

10.CHASSIS FRAME DRAWING

10-1.Chassis cab detail drawing 10-2.Cross member detail drawing 10-3.Bolt and rivet near the No.2 & No.3 cross member

11. CAUTIONS NEEDED FOR THE INSTALLATION OF THE PROPELLAR SHAFT

12.0THERS

12-1.Fuel tank 12-2.Rear safety guard
1. IDENTIFICATION CODE

1. IDENTIFICATION CODE

1	2		3 (4)		5	6
DRIVE	PAYLOAD		VEH. TYPE	WHEEL BASE	ENGINE	SERIAL NO.
4X2:F	CARGO	5TON :5	CARGO:C	CARGO - SHORT:S	D6BR:R	
			DUMP:D	LONG:L	KK-TCI : L	
				EXTRA LONG:E	(LOW HORSE)	
					KK-TCI : H	
	DUMP	5TON :5		DUMP : D	(HIGH HORSE)	

EX) 5TON LONG CARGO TRUCK (D6BR) : HF5C-LR 5TON DUMP TRUCK(KK-TCI, LOW HORSE) : HF5D-DL

2.GENERAL SPECIFICATION

2.GENERAL SPECIFICATION

			HD120 CARGO							
			SHORT(D6BR)	SHORT(KK-TCI)	LONG(D6BR)	LONG(KK-TCI)	E-LONG(D6BR)	E-LONG(KK-TCI)		
			(HF5C-SR)	(HF5C-SL)	(HF5C-LR)	(HF5C-LL)	(HF5C-ER)	(HF5C-EL)		
0.	A. L	mm	6765	←	7465	←	8415	←		
0.	A. W	mm	2195	←	2195	←	2195	←		
0.	А. Н	mm	2505	←	2505	←	2505	←		
	LENTH	mm	4600	←	5300	←	6250	←		
BODY	WIDTH	mm	2280	←	2280	<i>←</i>	2280	<u>←</u>		
INSIDE	HEIGHT	mm	400	<i>←</i>	400	<i>←</i>	400	←		
DEC	K OFFSET	mm	470	←	585	<i>←</i>	745	<u>←</u>		
WHE	EEL BASE	mm	3795	←	4260	<i>←</i>	4895	<i>←</i>		
WHEEL	FRT	mm	1795	←	1795	<i>←</i>	1795	←		
TREAD	RR	mm	1660	←	1660	<i>←</i>	1660	←		
OVER	FRT	mm	1245	←	1245	<u>←</u>	1245	←		
HANG	RR	mm	1725	<i>←</i>	1960		2275	←		
C/CAB	FRT	ka	2270	2385	2375	2510	2435	2600		
(kg)	RR	ka	1300	1430	1340	1470	1325	1470		
	TTI	ka	3570	3815	3715	3980	3760	4070		
MAX	FRT	ka	3600	3720	3600	3720	3600	3720		
GVW	RR	ka	6740	7800	6740	7800	6740	7800		
(ka)	TTI	ka	10340	11520	10340	11520	10340	11520		
(1(g)	MODEL	i i g	D6BB	KK-TCI	D6BB	KK-TCI	D6BB	KK-TCI		
ENGINE	ASPIRATION		NA	TCI	NA	TCI	NA	TCI		
Ename			7545	6606	7545	6606	7545	6606		
		ns/rnm	185/2900	196/2500	185/2900	196/2500	185/2900	196/2500		
	TOROUE	kam/rpm	51/1400	58/1700	51/1400	58/1700	51/1400	58/1700		
PEREOR-	MAX SPD	km/b	124(114)	123	124(114)	123	124(114)	123		
	MAX CPD	ton Q	0 475	0,406	0 457	0 302	0 447	0.42		
WANGE		m	6.2	0.400	7.2	0.002	0.447	0.42		
	MODEL		Mese	КЦ_10	Nese	×U_10	Mese	КЦ_10		
	MODEL	1 ot	6 903	6.967	6 903	6 967	6 003	6.967		
		151	0.903	0.907	0.903	0.907	0.905	0.907		
т / м	CEAD	Ond	4 206	1 247	4 206	1 947	4 206	4 947		
I / WI	ULAN	2110	4.200	4.241	4.200	4.247	4.200	4.247		
	DATIO	Ord	0.000	0 454	0.000	0 454	0.000	0.454		
	NATIO	Siù	2.320	2.434	2.320	2.434	2.320	2.434		
		4+6	1 11 1	1 471	1 11 1	1 471	1 111	1 471		
		411	1.414	1.471	1.414	1.471	1.414	1.471		
			1 000	1 000	1 000	1 000	1 000	1 000		
		อเท	1.000	1.000	1.000	1.000	1.000	1.000		
		Cth	0.747	0.700	0.747	0.700	0.747	0.700		
		610	0.747	0.769	0.747	0.769	0.747	0.769		
		7+6								
		7 th	_	_	_	_	_	_		
		öth	_	-	_	_	_	_		
						0.400		0.400		
		KEV	6.903	6.492	6.903	6.492	6.903	6.492		
	NODEL				D 411 - L1		D 411 L L			
K/AXLE			U4H-11	← ▲ 0000	U4H-11	← ↓	U4H-11	← ↓		
7.0-	KATTO		5.428	4.333	5.428	4.333	5.428	4.333		
LIKE	FKI		8.25K16-16PR	245/70R19.5-14PR	8.25K16-16PR	245/70R19.5-14PR	8.25K16-16PR	245/70R19.5-14PR		
	RR		8.25R16-16PR	245/70R19.5-14PR	8.25R16-16PR	245/70R19.5-14PR	8.25R16-16PR	245/70R19.5-14PR		

			HD120 DUMP			
			DUMP(D6BR)	DUMP(KK-TCI)		
			(HF5D-DR)	(HF5C-DL)		
0.	A. L	mm	5752	←		
0.	A. W	mm	2195	←		
0.	A. H	mm	2510	←		
	LENTH	mm	3400	←	 	
BODY	WIDTH	mm	2060	←		
INSIDE	HEIGHT	mm	480	←	 	
DECI	K OFFSET	mm	450	←	 	
WHE	EL BASE	mm	3300	←	 	
WHEEL	FRT	mm	1795	←		
TREAD	RR	mm	1660	<i>←</i>	 	
OVER	FRT	mm	1245	←		
HANG	RR	mm	1207	<i>←</i>	 	
C/CAB	FRT	kg	2262	2346		
(kg)	RR	kg	1260	1314	 	
	TTL	kg	3522	3660		
MAX	FRT	kg	3600	3720	 	
G.V.W	RR	kg	7160	7800		
(kg)	TTL	kg	10760	11520	 	
	MODEL		D6BR	KK-TCI		
ENGINE	ASPIRATION		NA	TCI		
	DISPLACEMENT	сс	7545	6606		
	OUTPUT	ps/rpm	185/2900	196/2500		
	TORQUE	kgm/rpm	51/1400	58/1700		
PERFOR-	MAX.SPD	km/h	124(114)	103	 	
MANCE	MAX.GRD	tan O	0.421	0.434		
	T/RAD	m	5.7	<i>←</i>	 	
	MODEL		M6S6	KH-10	 	
		1st	6.903	6.967	 	
Т/М	GEAR	2nd	4.206	4.247		
	RATIO	3rd	2.320	2.454		
		4th	1.414	1.471		
		5th	1.000	1.000		
		6th	0.747	0.769		
		7th	_	-		
		8th	_	-		
		REV	6.903	6.492		
R/AXLE	MODEL		D4H-11	<i>←</i>		
	RATIO		5.428	4.875		
TIRE	FRT		8.25R16-18PR	245/70R19.5-14PR		
	RR		8.25R16-18PR	245/70R19.5-14PR		

NOTE : 1) WEIGHT BASED ON THE STANDRD SPECIFICATION

2) ABOVE DATAS BASED ON THE CHASSIS CAB

3. EXTERIOR DRAWING OF THE COMPLETE VEHICLE

4. ENGINE PERFORMANCE CURVE

4. ENGINE PERFORMANCE CURVE

(1) D 6 B R

5. CAUTIONS REGARDING INSTALLATION MODIFICATION OR ALTERATION

5-1. Cautions needed for the front structure of the rear body

The structure of the front area of the rear body in relation to front wheel tires, exhaust pipe, cab and intake duct should be installed carefully as the followings.

(1) Move of the cab and the intake duct

In case of applying the floating cab mountaing, be free from interference with the cab and the intake duct. Make reference to the appendix drawing for the moving range of the cab and the intake duct.

(2) Sub frame

As the forward area of the sub frame is near exhaust pipe, be careful not to take fire by adding a protector to the outside of the sub frame. Also the ground clearance of the rear body floor and the height of fender should be more than 50mm from tires. Make reference to BODY BUILDER DRAWING for a rising quantity of tires. If the height of sub frame is low, as strength drops, use the steel sub frame surely in using the sub frame less than standard height. Make reference to the paragraph 2-2-4, COMMON BOOK of BODY BUILDER BOOK for dimension of the steel frame.

(3) Foremost cross bearer

As it nearby exhaust pipe, use steel instead of wood. Also make sure that there is a space of detaching transmission.

(4) Projecting relation of the upper side of transmission and chassis frame As harness connector and the sensor of gear shift unit are on the upper side of transmission, be free from ascending the upper side of transmission.

- (5) Object for stain prevention between cab and rear body Install a object for stain prevention between cab and rear body figure to prevent stain by front forward wheels as the appendix drawing.
- (6) Front and rear wheel fender

Make reference to the appendix drawing for the height of fender and mudguard. Also make reference to the paragraph 2-2-5, COMMON BOOK of BODY BUILDER BOOK. *) REFERENCE DRAWING OF MUD GUARD

5-2. Cautions needed for fastening U-bolt

In case of fastening U-bolt between the cab rear and No.3 cross member, refer to the appendix drawing of U-bolt installation.

(1) REFERENCE DRAWING OF U-BOLT INSTALLATION

HD120 LONG CARGO

HD120 E-LONG CARGO

5-3. Noise prevention parts

Don't modify or alterate noise prevention parts, which conform to the noise regulations. But in an unavoidable case, please contact with HMC. Also in case detaching noise prevention parts when installing or modifying them, be sure to install them as ever again after finishing installation or modification.

Position describing drawing of noise prevention parts.

8

(9)

FLEXIBLE PIPE

T/M UNDER COVER

5-4. Installation or alteration on the roof

In case of installation or alteration on the roof, make reference to the paragraph 3-2-2, COMMON BOOK of BODY BUILDER BOOK.

6.WEIGHT AND FRAME INFORMATION

6-1 Permissible weight

(1) Axle weight

			FRONT(kg)	REAR(kg)
D6BR	CARGO	HF*C-*R*	3,600	8,800
	DUMP	HF5D-*R*	\uparrow	Ţ
KK-TCI	CARGO	HF*C-*L*	3,720	8,800
	DUMP	HF5D-*L*	\uparrow	Ŷ

6-2 Tire specification

		PERMISSIBLE	AIR	EFF. RA	AD(mm)	
TIRE TYPE	LBS / PSI	WEIGHT	PRESSURE	STATIC	DYNAMIC	OTR
		(Kg)	(Kg/cm²)	RAD.	RAD.	DIA.
8.25R16-16PR	(S) 4220 / 114	1915	8.0	402	403	853 ~
	(D) 3715 / 114	1685	8.0	403	404	870
8.25R16-18PR	(S) 4320 / 115	1995	8.79	402	403	853 ~
	(D) 3800 / 115	1790	8.79	403	404	870
245/70R19.5-14PR	(S) 4540 / 105	2060	7.4	403	414	848 ~
	(D) 4300 / 105	1950	7.4	404	415	858

(S) : SINGLE, (D) : DOUBLE

6-3 FRAME MATERIAL & MAIN SECTION

7.SUSPENSION CHARACTERISTICS

7. SUSPENSION CHARACTERISTICS

7-1 Formula of the frame ground height

<u>۲</u>	Σ
Wf	Wr

MODEL	FRT/RR	TIRE TYPE	FORMULA(Hf/Hr)
HD120 SHORT(D6BR)	FRONT	8.25R16-16PR	$Hf = -0.0284 \cdot Wf + 877 \pm 10$
(HF5C-SR)	REAR	\uparrow	Hr = −0.0138·Wr + 873 ± 25
HD120 LONG(D6BR)	FRONT	1	$Hf = -0.0283 \cdot Wf + 876 \pm 10$
(HF4.5C-LR)	REAR	\uparrow	$Hr = -0.0134 \cdot Wr + 871 \pm 25$
HD120 E/LONG(D6BR)	FRONT	\uparrow	$Hf = -0.0283 \cdot Wf + 876 \pm 10$
(HF5C-ER)	REAR	\uparrow	$Hr = -0.0134 \cdot Wr + 884 \pm 25$
HD120 DUMP(D6BR)	FRONT	8.25R16-18PR	$Hf = -0.0277 \cdot Wf + 882 \pm 10$
(HF5D-DR)	REAR	\uparrow	$Hr = -0.0139 \cdot Wr + 881 \pm 25$
HD120 SHORT(KK-TCI)	FRONT	245/70R19.2-14PR	$Hf = -0.0285 \cdot Wf + 880 \pm 10$
(HF5C-SR)	REAR	\uparrow	Hr = −0.0138·Wr + 874 ± 25
HD120 LONG(KK-TCI)	FRONT	\uparrow	$Hf = -0.0285 \cdot Wf + 882 \pm 10$
(HF4.5C-LR)	REAR	\uparrow	$Hr = -0.0134 \cdot Wr + 874 \pm 25$
HD120 E/LONG(KK-TCI)	FRONT	\uparrow	$Hf = -0.0285 \cdot Wf + 882 \pm 10$
(HF5C-ER)	REAR	\uparrow	$Hr = -0.0134 \cdot Wr + 886 \pm 25$
HD120 DUMP(KK-TCI)	FRONT	\uparrow	$Hf = -0.0264 \cdot Wf + 881 \pm 10$
(HF5D-DR)	REAR	\uparrow	$Hr = -0.0140 \cdot Wr + 882 \pm 25$

8. PTO CONTROL

8. P.T.O CONTROL

8-1. T/M P.T.0

(1) Use of genuine parts P.T.01)Unless otherwise provided for, be sure tomuse genuine parts.

2)Refer to appendix P.T.O ASSY drawing for details in using power.

- (2) Use P.T.O other than genuine parts A particular reason, when using PTO other than genuine parts, consult with HMC.
- (3) Cautions regarding the propellar shaft driving P.T.O
 - 1)Make sure that an angle of intersection of propellar shaft makes a solid angle be 15. MAX, and also the angle of intersection of the both ends of propellar shaft is the same.
 - 2)As in driving, there is a displacement of about ± 10mm(up and down, left and right) from the position of P.T.O outlet, take notice of an allowable angle of intersection of propellar shaft.
 - 3)The direction of P.T.O output shaft is contrary to the direction of engine revolution.
- (4) T/M P.T.O table
 - M6S6 TM
 - 1)P.T.0 TYPE : 47110-DS052
 - 2)TORQUE : 25kg · m/1500rpm
 - 3)TM & P.T.O GEAR RATIO : 23/43 X 37/23
 - 4)SHIFT STROKE : 11mm
 - 5)ALLOWABLE TORQUE : 4.1kg · m
 - KH-10 TM
 - 1)P.T.0 TYPE : 47110-6A500
 - 2)TORQUE : 25kg · m/1500rpm
 - 3)TM & P.T.O GEAR RATIO : 1.046(38/20x18/31x17/18)
 - 4) ROTATION : CLOCKWISE FROM REAR VIEW

- P.T.O TYPE : 47110-DS052

- P.T.O TYPE : 47110-6A500

8-2. DUMP CONTROL LEVER VEHICLE : HD120 DUMP

9. EXTERIOR DRAWING OF THE CAB

9. EXTERIOR DRAWING OF THE CAB

10. CHASSIS FRAME DRAWING

10-1. CHASSIS CAB DETAIL DRAWING

10-2. CROSS MEMBER DETAIL DRAWING

(1) FRONT CROSS MEMBER

- CARGO ALL

- DUMP

10-3. BOLTS NEAR THE NO.2 & NO.3 CROSS MEMBER

(1) SHORT CARGO & DUMP

VEHICLES	А	В
SHORT CARGO	2055	1120
DUMP	1780	900

(2) LONG CARGO, EXTRA LONG CARGO & U-LONG CARGO

VEHICLES	А	В
LONG CARGO	1880	1030
E-LONG CARGO	1880	1150
U-LONG CARGO	1880	820

11. CAUTIONS NEEDED FOR THE INSTALLATION OF THE P/SHAFT

11. CAUTOINS NEEDED FOR THE INSTALLATION OF THE PROPELLAR SHAFT

Be sure not to modify or alter propellar shaft, as it was designed to suit a vehicle feature. But in an unavoidable case, observe the following items.

(1) 2-JOINT

12. OTHERS

12-1. FUEL TANK

- (1) FUEL TANK CAPACITY 100L
 - VEHICLE : HD120 SHORT CARGO HD120 DUMP

(2) FUEL TANK CAPACITY - 200L

- VEHICLE : HD120 LONG CARGO HD120 E-LONG

12-2. Rear safety guard

In case of modifying or altering rear safety guard, so care should be taken to conform to the regulations about ground clearance.

HYUNDAI TRUCK BODY BUILDER BOOK

- HEAVY DUTY TRUCK -

2005.06. HYUNDAI MOTOR COMPANY

COMMERCIAL VEHICLE ENGINEERING & RESEARCH CENTER

INDEX 🖘

1. IDENTIFICATION CODE

2.GENERAL SPECIFICATION

3.EXTERIOR DRAWING OF THE COMPLETE VEHICLE

4. ENGINE PERFORMANCE CURVE

5. CAUTIONS REGARDING INSTALLATION, MODIFICATION OR ALTERATION

5-1.Cautions needed for the front structure of the rear body 5-2.Cautions needed for the fastening upper body mounting 5-3.Noise prevention parts 5-4.Installation or alteration on the roof 5-5.Installation of the roof spoiler

6.WEIGHT AND FRAME INFORMATION

6-1.Permissible weight6-2.Tire specification6-3.Side frame material and main section

7.SUSPENSION CHARACTERISTICS

8.P.T.O CONTROL

8-1.Transmission P.T.0

- 8-2.Flywheel P.T.0
- 8-3.Cautions needed for the propellar shaft driven by P.T.0

8-4.Dump and Mixer control lever

9.EXTERIOR DRAWING OF THE CAB

10.CHASSIS FRAME DRAWING

10-1.Chassis cab detail drawing

11. CAUTIONS NEEDED FOR THE INSTALLATION OF THE PROPELLAR SHAFT

1. IDENTIFICATION CODE

1. IDENTIFICATION CODE

	VEH	ICLE	ENGINE	CODE	REMARK
CARGO	4X2	8T SHORT/LONG	D6BR	HD160	
		8.5T SHORT/LONG	D6AV,Q-dd	HD170	
	6X4	11.5T LONG	D6AC,D6CA	HD250	
		16T SHORT/MIDDLE	D6AC,D6CA	HD260	
		17T MIDDLE	D6CA	HD260	
		19M P/CARGO	D6AC	HD19M	
		19T E-LONG	D6AC,D6CA	HD320	
		19.5T SHORT	D6AC,D6CA	HD310	
DUMP	4x2	8T-DUMP	D6BR, D6DA	HD160	
	6x4	15T-DUMP	D6AC	HD270	
	8x4	23T-DUMP	D6CA	HD370	
MIXER	6x4	7 m³−MIXER	D6CA	HD270	
	8x4	9 m° —MIXER	D6CA	HD380	
TRACTOR	4x2	4x2 TRACTOR	D6AC,D6CA	HD450/HD500	
	6x4	6x4 TRACTOR	D6AC,D6CA	HD700/HD1000	

2.GENERAL SPECIFICATION

1. GENERAL SPECIFICATION

	_		HD1	HD170				
			SHORT(8T)	LONG(8T)	SHORT	(8.5T)	LONG(8.5T)
			D6BR	D6BR	D6AV	Q-dd	D6AV	Q-dd
0.A.	.L (C/CAB)	mm	7,850	9,525	7,850	←	9,525	\leftarrow
0.A.	.W (C/CAB)	mm	2,495	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
0.A.	H (C/CAB)	mm	2,910	2,915	2920	\leftarrow	2915	←
BODY	LENGTH	mm	5,400	7,300	5,400	\leftarrow	7,300	←
INSIDE	WIDTH	mm	2,340	\leftarrow	\leftarrow	<i>~</i>	<i>~</i>	<i>←</i>
	HEIGHT	mm	450	\leftarrow	\leftarrow	<i>~</i>	<i>~</i>	<i>←</i>
DEC	CK OFFSET	mm	775	1,280	775	<i>~</i>	1,280	<i>←</i>
WH	EEL BASE	mm	4,395	5,850	4,395	←	5,850	<i>←</i>
WHEEL	FRT	mm	2,040	\leftarrow	\leftarrow	←	←	~
TREAD	RR	mm	1,850	\leftarrow	\leftarrow	←	←	<i>←</i>
OVER	FRT(BODY)	mm	1,495	\leftarrow	\leftarrow	←	←	<i>←</i>
HANG	RR(RR GUARD)	mm	1,960	2,180	1,960	←	2,180	~
	FRT	kg	3,490	3,560	3,850	3,960	3,920	4,030
C/CAB	RR	kg	2,340	2,380	2,350	2,370	2,390	2,410
	TTL	kg	5,830	5,940	6,200	6,330	6,310	6,440
МЛХ	FRT	kg	6,700	\leftarrow	6,550	←	\leftarrow	<i>←</i>
G.V.W	RR	kg	10,800	←	10,800	<i>←</i>	<i>—</i>	<i>←</i>
	TTL	kg	17,500	\leftarrow	17,350	\leftarrow	\leftarrow	←
	MODEL		D6BR	\leftarrow	D6AV	Q-dd	D6AV	Q-dd
ENGINE	ASPIRATION		NA	\leftarrow	\leftarrow	TCI	\leftarrow	TCI
Endrine	DISPLACEMENT	СС	7,545	\leftarrow	11,149	\leftarrow	11,149	←
	OUTPUT	ps/rpm	177/2900	\leftarrow	235/2200	290/2000	235/2200	290/2000
	TORQUE	kgm/rpm	48/1400	\leftarrow	82/1400	110/1200	82/1400	110/1200
PERFOR-	MAX.SPD	km/h	109	103	99	120	99	-
MANCE	MAX.GRD	tan O	0.193	0.195	0.278	0.341	0.274	-
	MIN. TURNING RAD.	m	7.5	9.9	7.5	<i>~</i>	10.1	<i>←</i>
	MODEL		M8S5(DD)	\leftarrow	M8S5(0D)	M10S6	M8S5(0D)	M10S6
	CEAR	1st	6.597	\leftarrow	5.405	6.552	5.405	6.552
Т/М	RATIO	and	4.207	\leftarrow	3.447	4.382	3.447	4.382
		2110	(4.178)		(3.463)	0.445	(3.463)	0.445
		3rd	(2.432	\leftarrow	1.739	2.415	1.739	2.415
		4th	1.407	\leftarrow	1.000	1.621	1.000	1.621
		5th	1.000	\leftarrow	0.738	1	0.738	1
		511	(1.000)		(0.741)	0 750	(0.741)	0.750
		6th	-	-	-	0.758	-	0.758
		7th	-	-	_	_	_	-
		8th	-	_	-	_	-	-
		REV	6.896 (6.849)	\leftarrow	5.650 (5.677)	6.849	5.650 (5.677)	6.849
	MODEL		D10H	\leftarrow	~ ´	D10HT-II	D10H	D10HT-II
K/AXLE	RATIO		6.166	\leftarrow	\leftarrow	4.333	6.166	4.333
TIDE	FRT		11.00X20-16PR	<i>←</i>	<i>←</i>	←	<i>←</i>	<i>←</i>
TINE	RR		11.00X20-16PR	\leftarrow	\leftarrow	~	\leftarrow	~

NOTE : 1) WEIGHT BASED ON THE STANDRD SPECIFICATION

2) ABOVE DATAS BASED ON THE CHASSIS CAB

			HD250			HD260			
				LONG(11.5T)		SHORT(16T)			
			D6AC	D6AC()	D6CA360-TAIWAN	D6AC	D6AC()	D6CA350-TAIWAN	
0.A.	.L (C/CAB)	mm	11,610	\leftarrow	<i>←</i>	9,635	\leftarrow	\leftarrow	
0.A.	.W (C/CAB)	mm	2,495	\leftarrow	←	4	←	←	
0.A.	.H (C/CAB)	mm	2,920	\leftarrow	←	2,910	~	←	
BODY	LENGTH	mm	9,100	\leftarrow	~	7,080	\leftarrow	←	
INSIDE	WIDTH	mm	2,340	\leftarrow	←	\leftarrow	←	←	
	HEIGHT	mm	450	\leftarrow	\rightarrow	\leftarrow	←	←	
DEC	CK OFFSET	mm	780	\leftarrow	←	470	\leftarrow	←	
WH	EEL BASE	mm	6,950	\leftarrow	←	5,650	<i>←</i>	←	
WHEEL	FRT	mm	2,040	\leftarrow	←	\leftarrow	<i>←</i>	←	
TREAD	RR	mm	1,850	\leftarrow	←	\leftarrow	<i>←</i>	←	
OVER	FRT(BODY)	mm	1,495	\leftarrow	<i>←</i>	\leftarrow	←	←	
HANG	RR(RR GUARD)	mm	3,165	\leftarrow	<i>←</i>	2,490	←	<i>←</i>	
	FRT	kg	4,275	\leftarrow	4,525	4,190	\leftarrow	4,405	
C/CAB	RR	kg	4,565	\leftarrow	4,575	4,160	←	4,290	
	TTL	kg	8,840	\leftarrow	9,100	8,350	\leftarrow	8,695	
ΜΔΧ	FRT	kg	6,700	\leftarrow	<i>←</i>	6,550	\leftarrow	<i>←</i>	
G.V.W	RR	kg	21,600	\leftarrow	<i>←</i>	21,600	\leftarrow	<i>←</i>	
	TTL	kg	28,300	\leftarrow	~	28,150	<i>~</i>	<i>←</i>	
	MODEL		D6AC	D6AC(II)	D6CA360	D6AC	D6AC(II)	D6CA350	
ENGINE	ASPIRATION		TCI	\leftarrow	~	TCI	<i>~</i>	<i>←</i>	
-	DISPLACEMENT	CC	11,149	\leftarrow	12,344	11,149	←	12,344	
	OUTPUT	ps/rpm	340/2200	\leftarrow	360/1900	340/2200	<i>←</i>	350/1900	
	TORQUE	kgm/rpm	140/1400	148/-	160/1200	140/1400	148/-	148/1200	
PERFOR-	MAX.SPD	km/h	117	-	-	118	-	-	
MANCE	MAX.GRD	tan O	0.466	-	_	0.360	-	-	
	MIN. TURNING RAD.	m	9.9	\leftarrow	<i>←</i>	8.1	~	<i>←</i>	
	MODEL		M12S6	H160S6	←	M12S6	<i>←</i>	←	
	GEAR	1st	7.213	\leftarrow	\leftarrow	\leftarrow	\leftarrow	<i>←</i>	
Т/М	RATIO	2nd	4.178	\leftarrow	←	\leftarrow	\leftarrow	←	
		3rd	2.587	\leftarrow	←	\leftarrow	←	←	
		4th	1.621	\leftarrow	←	←	←	←	
		5th	1.000	\leftarrow	~	\leftarrow	~	~	
		6th	0.702	\leftarrow	←	\leftarrow	←	←	
		7th	-	-	-	-	-	-	
		8th	_	_	-	_	-	-	
		REV	7.081	<i>~</i>	← 	↓	←	← 	
R/AXLE	MODEL		D10HT	\leftarrow	←	←	T14HT	D10HT-II	
	RATIO		5.571	5.143	←	5.571	<i>←</i>	←	
TIRE	FRT		11.00X20-16PR	\leftarrow	←	\leftarrow	<i>←</i>	← 	
RR			11.00X20-16PR	\leftarrow	←	\leftarrow	←	←	

2) ABOVE DATAS BASED ON THE CHASSIS CAB

			HD260				HD19M	
				MIDDLE(16T)		MIDDLE(17T)	19M P/	′CARGO
			D6AC	D6AC(11)	D6CA350-TAIWAN	D6CA350-TAIWAN	D6AC	D6AC(11)
0.A.	L (C/CAB)	mm	10,310	\leftarrow	←	\leftarrow	10,925	\leftarrow
0.A.	W (C/CAB)	mm	2,495	\leftarrow	<i>←</i>	\leftarrow	←	\leftarrow
0.A.	H (C/CAB)	mm	2,910	\leftarrow	<i>←</i>	~	←	\leftarrow
BODY	LENGTH	mm	8,000	\leftarrow	←	_	8,300	\leftarrow
INSIDE	WIDTH	mm	2,340	\leftarrow	<i>←</i>	-	2,340	\leftarrow
	HEIGHT	mm	450	\leftarrow	<i>←</i>	_	450	\leftarrow
DEC	K OFFSET	mm	530	\leftarrow	←	-	610	\leftarrow
WH	EEL BASE	mm	6,100	\leftarrow	<i>←</i>	\leftarrow	6,420	\leftarrow
WHEEL	FRT	mm	2,040	\leftarrow	←	2,120	2,040	\leftarrow
TREAD	RR	mm	1,850	\leftarrow	<i>←</i>	\leftarrow	1,850	\leftarrow
0VER	FRT(BODY)	mm	1,495	\leftarrow	<i>←</i>	\leftarrow	1,495	\leftarrow
HANG	RR(RR GUARD)	mm	2,715	\leftarrow	←	\leftarrow	3,010	\leftarrow
	FRT	kg	4,230	\leftarrow	4,445	4,545	4,320	\leftarrow
C/CAB	RR	kg	4,220	\leftarrow	4,350	4,350	4,650	\leftarrow
	TTL	kg	8,450	\leftarrow	8,795	8,895	8,970	\leftarrow
	FRT	kg	6,550	\leftarrow	←	7,950	6,550	\leftarrow
MAX G.V.W	RR	kg	21,600	\leftarrow	←	21,600	21,600	\leftarrow
u.v.w	TTL	kg	28,150	\leftarrow	←	29,550	28,150	\leftarrow
	MODEL		D6AC	D6AC(11)	D6CA350	\leftarrow	D6AC	D6AC()
	ASPIRATION		TCI	\leftarrow	←	\leftarrow	TCI	\leftarrow
ENGTINE	DISPLACEMENT	СС	11,149	\leftarrow	12,344	¥	11,149	\leftarrow
	OUTPUT	ps/rpm	340/2200	\leftarrow	350/1900	\leftarrow	340/2200	\leftarrow
	TORQUE	kgm/rpm	140/1400	148/-	148/1200	\leftarrow	140/1400	148/-
PERFOR-	MAX.SPD	km/h	100	-	_	I	94	-
MANCE	MAX.GRD	tanθ	0.406	-	_	-	0.579	-
	MIN. TURNING RAD.	m	8.8	\leftarrow	←	\leftarrow	9.1	\leftarrow
	MODEL		M12S6	\leftarrow	←	\leftarrow	M12S2x5	H160S2x5
	GEAR	1st	7.213	\leftarrow	<i>←</i>	\leftarrow	9.153 (7.145)	←
Т/М	RATIO	2nd	4.178	\leftarrow	~	\leftarrow	4.783	\leftarrow
		3rd	2.587	\leftarrow	←	\leftarrow	2.765 (2.158)	\leftarrow
		4th	1.621	\leftarrow	<i>←</i>	\leftarrow	1.666 (1.301)	\leftarrow
		5th	1.000	\leftarrow	←	\leftarrow	1.000 (0.780)	\leftarrow
		6th	0.702	\leftarrow	~	\leftarrow	-	-
		7th	-	-	-	-	-	-
		8th	_	-	-	-	-	-
		REV	7.081	\leftarrow	~	\leftarrow	8.105 (6.327)	\leftarrow
	MODEL		D10HT	T14HT	D10HT-11	←	D10HT	<i>←</i>
R/AXLE	RATIO		5.571	\leftarrow	\leftarrow	\leftarrow	6.166	5.571
TIDE	FRT		11.00X20-16PR	~	<i>←</i>	315/80R22.5-20PR	11.00X20-16PR	<i>~</i>
TINE	RR		11.00X20-16PR	\leftarrow	←	12R22.6-16PR	11.00X20-16PR	\leftarrow

NOTE : 1) WEIGHT BASED ON THE STA

2) ABOVE DATAS BASED ON THE CHASSIS CAB

3) 19M P/CARGO'S DATAS NOT INCLUDE TRAILER.

			HD320			HD310		
				E-LONG(19T)		0	SHORT(19.5T)	
			D6AC	D6AC(11)	L2D-A	D6AC	D6AC(11)	L2D-A
0.A	.L (C/CAB)	mm	12,245	\leftarrow	\leftarrow	11,395	\leftarrow	\leftarrow
0.A	.W (C/CAB)	mm	2,495	\leftarrow	←	2,495	\leftarrow	\leftarrow
0.A	.H (C/CAB)	mm	2,920	←	\leftarrow	2,920	\leftarrow	\leftarrow
BODY	LENGTH	mm	10,100	\leftarrow	←	9,100	\leftarrow	\leftarrow
INSIDE	WIDTH	mm	2,340	\leftarrow	←	2,340	\leftarrow	\leftarrow
	HEIGHT	mm	450	←	\leftarrow	450	\leftarrow	\leftarrow
DEC	CK OFFSET	mm	1,660	←	\leftarrow	1,350	\leftarrow	\leftarrow
WH	EEL BASE	mm	7,850	\leftarrow	\leftarrow	7,040	\leftarrow	\leftarrow
WHEEL	FRT	mm	2,040	←	\leftarrow	2,040	\leftarrow	\leftarrow
TREAD	RR	mm	1,850	\leftarrow	←	1,850	\leftarrow	\leftarrow
OVER	FRT(BODY)	mm	1,925	\leftarrow	←	1,925	\leftarrow	\leftarrow
HANG	RR(RR GUARD)	mm	2,470	\leftarrow	←	2,430	\leftarrow	\leftarrow
	FRT	kg	6,225	\leftarrow	6475	6,070	\leftarrow	6320
C/CAB	RR	kg	3,995	←	4035	3,950	\leftarrow	3990
	TTL	kg	10,220	←	10510	10,020	\leftarrow	10310
	FRT	kg	13,100	←	←	13,100	\leftarrow	←
MAX G.V.W	RR	kg	23,200	←	←	23,200	\leftarrow	←
u.v.w	TTL	kg	36,300	←	←	36,300	\leftarrow	←
MODEL			D6AC	D6AC(11)	D6CA(380)	D6AC	D6AC()	D6CA(380)
	ASPIRATION		TCI	~	\leftarrow	TCI	\leftarrow	~
ENGTINE	DISPLACEMENT	СС	11,149	~	12,344	11,149	\leftarrow	12,344
	OUTPUT	ps/rpm	340/2200	\leftarrow	380/1900	340/2200	\leftarrow	380/1900
	TORQUE	kgm/rpm	140/1400	148/-	160/1200	140/1400	148/-	160/1200
PERFOR-	MAX.SPD	km/h	94	-	-	94	-	-
MANCE	MAX.GRD	tanθ	0.643	-	-	0.456	-	-
	MIN. TURNING RAD.	m	11.7	\leftarrow	←	10.8	\leftarrow	\leftarrow
	MODEL		M12S2x5	H160S2x5	←	M12S2x5	H160S2x5	\leftarrow
	CEAR	1st	9.153	←	\leftarrow	9.153	\leftarrow	\leftarrow
Т/М	RATIO	and	4.783	<i>←</i>	←	4.783	\leftarrow	<i>←</i>
		ZHU	(3.733)			(3.733)		
		3rd	2.765	←	←	2.765 (2.158)	\leftarrow	<i>←</i>
		1th	1.666	<i>←</i>	←	1.666	\leftarrow	←
		411	(1.301)			(1.301)		
		5th	1.000 (0.780)	<i>←</i>	<i>~</i>	1.000 (0.780)	\leftarrow	\leftarrow
		6th	_	<i>~</i>	~	-	\leftarrow	~
		7th	_	-	-	-	-	-
		8th	-	-	_	-	-	_
		REV	8.105	←	←	8.105 (6.327)	\leftarrow	←
D/10/1 -	MODEL		D12HT	←	D12HT-II	D12HT	~	D12HT-II
R/AXLE	RATIO		6.166	5.571	5.143	6.166	5.571	5.143
TICE	FRT		11.00X20-16PR	←	←	11.00X20-16PR	←	←
TIRE	RR		11.00X20-16PR	←	←	11.00X20-16PR	←	←
	•		-	•	•	-		•

NOTE : 1) WEIGHT BASED ON THE STA

2) ABOVE DATAS BASED ON THE CHASSIS CAB

		HD160			HD270		HD370	
				4x2(8T)		6x4(15T)	8x4(23T)
			D6BR	D6DA19	D6DA22	D6AC	D6AC()	L2D-A
0.	. A. L	mm	6,520	\leftarrow	\leftarrow	7,635	\leftarrow	9,025
0.	. A. W	mm	2,495	\leftarrow	\leftarrow	←	←	←
0.	. A. H	mm	2,930	\leftarrow	Ļ	~	←	2,945
BODY	LENGTH	mm	4,000	\leftarrow	\leftarrow	4,840	←	5,220
INSIDE	WIDTH	mm	2,330	\leftarrow	~	2,300	<i>←</i>	<i>←</i>
	HEIGHT	mm	575	\leftarrow	Ļ	905	←	1,306
DEC	CK OFFSET	mm	750	\leftarrow	~	350	<i>←</i>	1,800
WH	EEL BASE	mm	3,700	\leftarrow	\leftarrow	4,590	←	6,000
WHEEL	FRT	mm	2,050	\leftarrow	Ļ	2,040	←	2,098
TREAD	RR	mm	1,850	\leftarrow	\leftarrow	←	←	1,850
OVER	FRT	mm	1,495	\leftarrow	\leftarrow	←	←	1,925
HANG	RR	mm	1,325	\leftarrow	\leftarrow	1,550	←	1,100
	FRT	kg	-	-	-	-	-	_
KERB WT	RR	kg	-	-	-	-	-	-
	TTL	kg	-	-	-	-	-	-
	FRT	kg	6,550	\leftarrow	\leftarrow	6,700	←	18,000
G.V.W	RR	kg	10,800	\leftarrow	\leftarrow	23,600	←	23,600
	TTL	kg	17,350	\leftarrow	\leftarrow	30,300	\leftarrow	41,600
	MODEL		D6BR	D6DA19	D6DA22	D6AC	D6AC(11)	D6CA(380)
	ASPIRATION		NA	TCI	\leftarrow	←	←	←
ENGTINE	DISPLACEMENT	сс	7,545	6,606	\leftarrow	11,149	\leftarrow	12,344
	OUTPUT	ps/rpm	177/2900	196/2500	225/2500	340/2200	\leftarrow	380/1900
	TORQUE	kgm/rpm	48/1400	58/1700	65/1700	140/1400	148/-	160/1200
PERFOR-	MAX.SPD	km/h	80	_	_	_	_	_
MANCE	MAX.GRD	tan Ə	0.251	_	_	_	_	_
	MIN. TURNING RAD.	m	6.2	\leftarrow	\leftarrow	7.4	←	9.7
	MODEL		M8S5(DD)	\leftarrow	\leftarrow	M12S6	H160S6	ZF16S151
	GEAR	1st	6.597 (6.552)	~	<i>~</i>	7.213	~	13.86 (11.59)
Т/М	RATIO	2nd	4.207	\leftarrow	\leftarrow	4.178	<i>←</i>	9.52
		3rd	2.432	~	<i>~</i>	2.587	<i>~</i>	6.56
		4th	1.407	\leftarrow	\leftarrow	1.621	←	4.58
		5th	(1.397)	\leftarrow	~	1.000	←	(3.83) 3.02
		6th	(1.000) -	-	-	0.702	←	(2.53)
		7+6	-	-	-	_	_	(1.74) 1.43
		7.111	_	_	_	_	_	(1.20)
		8th	0.000			7.004		(0.84)
		REV	6.896 (6.849)	—	\leftarrow	7.081	<i>←</i>	(10.85)
R/AXI F	MODEL		D10H	\leftarrow	\leftarrow	D12HT	←	D12HT-II
	RATIO		6.666	5.571	6.166	6.166	←	4.875
TIRF	FRT		11.00X20-16PR	\leftarrow	\leftarrow	<i>←</i>	<i>←</i>	385/65R22.5-20PR
	RR		11.00X20-16PR	\leftarrow	\leftarrow	\leftarrow	\leftarrow	12R22.5-16PR

2) ABOVE DATAS BASED ON THE COMPLETED VEHICLE

			HD450/HD500		HD700/HD1000			
				4x2			6x4	
			D6AC	L2D-B(350)	L2D-B(380)	D6AC	D6AC(11)	L1D
0.	A. L	mm	5,880	\leftarrow	\leftarrow	6,665	\leftarrow	\leftarrow
0.	A. W	mm	2,495	\leftarrow	\leftarrow	←	\leftarrow	\leftarrow
0.	Α. Η	mm	2,850	\leftarrow	\leftarrow	2,895	\leftarrow	\leftarrow
BODY	LENGTH	mm	-	-	-	-	-	-
INSIDE	WIDTH	mm	-	-	-	-	-	-
	HEIGHT	mm	-	-	-	-	-	-
DEC	CK OFFSET	mm	470	\leftarrow	\leftarrow	260	\leftarrow	\leftarrow
WHI	EEL BASE	mm	3,450	\leftarrow	\leftarrow	4,350	\leftarrow	\leftarrow
WHEEL	FRT	mm	2,040	\leftarrow	\leftarrow	←	\leftarrow	\leftarrow
TREAD	RR	mm	1,850	\leftarrow	\leftarrow	←	\leftarrow	\leftarrow
OVER	FRT	mm	1,495	\leftarrow	\leftarrow	←	\leftarrow	\leftarrow
HANG	RR	mm	935	\leftarrow	\leftarrow	820	\leftarrow	\leftarrow
	FRT	kg	4,535	4,735	\leftarrow	4,400	\leftarrow	4,600
KERB WT	RR	kg	2,455	2,475	\leftarrow	4,480	\leftarrow	4,500
	TTL	kg	6,990	7,210	\leftarrow	8,880	\leftarrow	9,100
	FRT	kg	6,550	\leftarrow	\leftarrow	6,550	\leftarrow	←
G.V.W	RR	kg	11,800	\leftarrow	\leftarrow	23,600	\leftarrow	\leftarrow
	TTL	kg	18,350	\leftarrow	\leftarrow	30,150	\leftarrow	←
	MODEL		D6AC	D6CA350	D6CA380	D6AC	D6AC()	L1D
ENGINE	ASPIRATION		TCI	\leftarrow	\leftarrow	<i>~</i>	\leftarrow	<i>←</i>
LINGTINE	DISPLACEMENT	СС	11,149	12,344	\leftarrow	11,149	\leftarrow	12,344
	OUTPUT	ps/rpm	340/2200	350/1900	380/1900	340/2200	\leftarrow	410/1900
	TORQUE	kgm/rpm	140/1400	148/1200	\leftarrow	140/1400	148/-	188/1200
PERFOR-	MAX.SPD	km/h	-	-	-	-	-	-
MANCE	MAX.GRD	t an O	-	-	-	-	-	-
	MIN. TURNING RAD.	m	6.2	\leftarrow	\leftarrow	6.8	\leftarrow	\leftarrow
	MODEL	1	M12S2X5	H160S2X5	\leftarrow	M12S2X5	ZF16S151	\leftarrow
	CEAR	1st	9.153	\leftarrow	\leftarrow	9.153	13.86	\leftarrow
Т/М	RATIO	Ond	4.783	←	~	4.783	9.52	←
		2110	(3.733)			(3.733)	(7.96)	
		3rd	2.765 (2.158)	\leftarrow	\leftarrow	2.765 (2.158)	6.56 (5.48)	\leftarrow
		4th	1.666	\leftarrow	\leftarrow	1.666	4.58	←
			(1.301)	<u> </u>		(1.301)	(3.83)	<u> </u>
		5th	(0.780)	`	· ·	(0.780)	(2.53)	, , , , , , , , , , , , , , , , , , ,
		6th	-	-	-	-	2.08	\leftarrow
			_	_	_	_	(1./4)	_
		7th					(1.20)	
		8th	-	-	-	-	1 (0.84)	-
		REV	8.105	\leftarrow	\leftarrow	8.105	12.97	<i>~</i>
	MODEL		(0.327) D124	←	←	(0.327) D12HT	<u>(10.85)</u> B178HT	
R/AXLE	RATIO		4 875	←	←	5 571	4 875	3 909
	FRT		11.00X20-16PR		←	11.00X20-16PR	↔	↔
TIRE	RR		11.00X20-16PR	←	<i>←</i>	11.00X20-16PR	<i>←</i>	←
L	101							

2) ABOVE DATAS BASED ON THE COMPLETED VEHICLE

			HD270		
			7 m ³		
			L2D-B		
0. A. L mm			8,310		
0.	A.W	mm	2495		
0.	Α. Η	mm	3660		
BODY	LENGTH	mm	4178.5		
INSIDE	WIDTH	mm	2100		
	HEIGHT	mm	-		
DEC	K OFFSET	mm	470		
WHE	EL BASE	mm	4,590		
WHEEL	FRT	mm	2,040		
TREAD	RR	mm	1,850		
OVER	FRT	mm	1,495		
HANG	RR	mm	2,225		
	FRT	kg	_		
KERB WT	RR	kg	_	 	
	TTL	kg	-		
	FRT	kg	6,700		
G.V.W	RR	kg	21,600	 	
	TTL	kg	28,300	 	
	MODEL		D6CA380B		
ENGINE	ASPIRATION		TCI	 	
Ename	DISPLACEMENT	CC	12,344		
	OUTPUT	ps/rpm	380/1900		
	TORQUE	kgm/rpm	148/1200		
PERFOR-	MAX.SPD	km/h	_		
MANCE	MAX.GRD	tan O	_		
	MIN. TURNING RAD.	m	7.4		
	MODEL		M12S6		
	GEAR	1st	7.213		
T / M	RATIO	2nd	4.178		
		3rd	2.587		
		4th	1.621		
		5th	1.000		
		6th	0.702		
		7th	-		
		8th	-		
		REV	7.081		
	MODEL		D10HT-II	 	
n/ AALE	RATIO		5.571		
TIRF	FRT		11.00X20-16PR	 	
1 1 I IL	RR		11.00X20-16PR		

2) ABOVE DATAS BASED ON THE COMPLETED VEHICLE

3.EXTERIOR DRAWING OF THE COMPLETE VEHICLE

HD170 D6AV HYUNDAI MOTOR COMPANY \neg P D 2040 ₿ 1850 D ð D_____ Þ D, 0 1865 đ 日 \square 4395 7850 € ₽ Ħ K 1420 1 . 0 0 (Contraction of the second se Ē 5495 5920

4. ENGINE PERFORMANCE CURVE

4. ENGINE PERFORMANCE CURVE

1) KK-TCI (HIGH HORSE POWER)

2) KK-TCI (LOW HORSE POWER)

4) D6AC

5) L1D

6) L2D – A

7) L2D-B

5.CAUTIONS REGARDING INSTALLATION MODIFICATION OR ALTERATION

5-1. Cautions needed for the front structure of the rear body

The structure of the front area of the rear body in relation to front wheel tires, exhaust pipe, cab and intake duct should be installed carefully as the followings.

(1) Move of the cab and the intake duct

In case of applying the floating cab mountaing, be free from interference with the cab and the intake duct. Make reference to the appendix drawing for the moving range of the cab and the intake duct.

(2) Sub frame

As the forward area of the sub frame is near exhaust pipe, be careful not to take fire by adding a protector to the outside of the sub frame. Also the ground clearance of the rear body floor and the height of fender should be more than 50mm from tires. Make reference to BODY BUILDER DRAWING for a rising quantity of tires. If the height of sub frame is low, as strength drops, use the steel sub frame surely in using the sub frame less than standard height. Make reference to the paragraph 2-2-4, COMMON BOOK of BODY BUILDER BOOK for dimension of the steel frame.

(3) Foremost cross bearer

As it nearby exhaust pipe, use steel instead of wood. Also make sure that there is a space of detaching transmission.

(4) Projecting relation of the upper side of transmission and chassis frame As harness connector and the sensor of gear shift unit are on the upper side of transmission, be free from ascending the upper side of transmission.

- (5) Object for stain prevention between cab and rear body Install a object for stain prevention between cab and rear body figure to prevent stain by front forward wheels as the appendix drawing.
- (6) Front and rear wheel fender Make reference to the appendix drawing for the height of fender and mudguard. Also make reference to the paragraph 2-2-5, COMMON BOOK of BODY BUILDER BOOK.
*) Move of the cab and the intake duct

MODEL	А		
CARGO, DUMP	1943		
TRACTOR	1963		

- (4X2 CARGO, DUMP, TRT) (6X4 CARGO, DUMP, TRT)
- *) REFERENCE DRAWING OF MUD GUARD

5-2. Cautions needed for fastening UPPER BODY MT'G

In case of fastening UPPER BODY MT'G between the cab rear and No.2 cross member, refer to the appendix fastening drawing U-bolt, don't fasten U-bolt to the tapercut portion frame.

Inevitable, in mounting sub frame and the like on the taper-cut portion of sub frame, make reference to the COMMON BOOK of BODY BUILDER BOOK.

4x2,6X4 : D6AC(Q-dd)

6X4 CARGO 6X4 DUMP

5-3. Noise prevention parts

Don't modify or alterate noise prevention parts, which conform to the noise regulations. But in an unavoidable case, please contact with HMC. Also in case detaching noise prevention parts when installing or modifying them, be sure to install them as ever again after finishing installation or modification.

Position describing drawing of noise prevention parts.

(1) 4X2 CARGO, DUMP, TRACTOR 6X4 CARGO, DUMP, TRACTOR

5-4 Installation or alteration on the roof

6.WEIGHT AND FRAME INFORMATION

6-1 Permissible weight

(1) Axle weight

FRT/FR FRT/RR

RR/FRT RR/RR

				FRT/FRT	FRT/RR	RR/FRT	RR/RR	
				(kg)	(kg)	(kg)	(kg)	미고
4x2	AXLE		HD160	6,700	_	10,800	_	D10H
		CARGO	HD170	6,550	_	10,800	_	D10H D10H-11
		DUMP	HD160	6,550	_	10,800		D12HT
		TRACTOR	HD450/500	6,550	_	11,800	-	D12H
	TIRE		11.00x20-16PR	6,700	_	11,600	I	HANKOOK
			12R22.5-16PR	6,700	_	12,300	-	KUMHO/HANKOOK
6x4	AXLE	CARGO	HD250	6,700	_	10,800	10,800	D10HT
			HD260/HD19M	6,550	_	10,800	10,800	D10HT/T14HT
			HD260	7,950	-	10,800	10,800	D10HT
		DUMP	HD270	6,700	-	11,800	11,800	D12HT
		MIXER	HD270	6,700	-	10,800	10,800	D10HT-II
		TRACTOR	HD700/HD1000	6,550	_	11,800	11,800	D12HT R178HT
	TIRE		11.00x20-16PR	6,700	_	11,600	11,600	HANKOOK
			12R22.5-16PR	6,700	-	12,300	12,300	KUMHO/HANKOOK
			315/80R22.5-20PR	8,164	-	-		
8x4	AXLE	CARGO	HD310, HD320	6,550	6,550	11,800	11,800	D12HT D12HT-II
		DUMP	HD370	9,000	9,000	11,800	11,800	D12HT-II
		MIXER HD380		9,000	9,000	11,800	11,800	D12HT-II
	TIRE		11.00x20-16PR	6,700	6,700	11,600	11,600	HANKOOK
			12R22.5-16PR	6,700	6,700	12,300	12,300	KUMHO/HANKOOK
			385/65R22.5-20PR	9,000	9,000	_	_	

6-2. Tire specification

		Permissible	Air	EFF. RA	AD(mm)	OVER
TIRE TYPE	LBS / PSI	Weight	Pressure	Static	Dynamic	ALL
		(Kg)	(Kg/cm²)	Radius	Radius	Dia.
11.00X20-16PR		3350	8.10	510±8	520±8	1090±8
(HANKOOK)		2900	7.40			
12R22.5-16PR		3350	8.40	508±8	527±8	1087±4
(HANKOOK)		3075	8.40			
315/80R22.5-20PR	(S) 9000/130	4082	9.14			
385/65R22.5-20PR	(S) 9370/120	4500	9.10	497	516	1057 ~
						1087

(S) : SINGLE, (D) : DOUBLE

7.SUSPENSION CHARACTERISTICS

7 SUSPENSION CHARACTERISTICS

7-1 Formula of the frame ground height

(1) 4X2

MODEL		TIRE TYPE	FORMULA(Hf/Hr)
HD160	FRONT	11.00X20-16PR	$Hf = -0.0150 \cdot Wf + 1092 \pm 10$
(8T-SHORT)	REAR	\uparrow	Hr = $-0.0115 \cdot$ Wr + 1161 ± 25
HD160	FRONT	\uparrow	$Hf = -0.0136 \cdot Wf + 1078 \pm 10$
(8T-LONG)	REAR	\uparrow	Hr = $-0.0126 \cdot$ Wr + 1149 ± 25
HD170	FRONT	\uparrow	$Hf = -0.0149 \cdot Wf + 1094 \pm 10$
(8.5T-SHORT)	REAR	\uparrow	Hr = $-0.0108 \cdot Wr + 1158 \pm 25$
HD170	FRONT	\uparrow	$Hf = -0.0137 \cdot Wf + 1086 \pm 10$
(8.5T-LONG)	REAR	\uparrow	Hr = $-0.0127 \cdot Wr + 1151 \pm 25$
HD160	FRONT	\uparrow	$Hf = -0.0136 \cdot Wf + 1078 \pm 10$
(8T DUMP:D6BR)	REAR	\uparrow	Hr = $-0.0126 \cdot$ Wr + 1150 ± 25
HD160	FRONT	\uparrow	$Hf = -0.0136 \cdot Wf + 1078 \pm 10$
(8T DUMP:KK-TCI)	REAR	\uparrow	Hr = $-0.0126 \cdot$ Wr + 1150 ± 25
HD450 - D6AC	FRONT	\uparrow	$Hf = -0.0214 \cdot Wf + 1070 \pm 10$
(4x2 TRACTOR)	REAR	\uparrow	Hr = $-0.0105 \cdot$ Wr + 1157 ± 25
HD550 - D6CA	FRONT	\uparrow	Hf = $-0.0215 \cdot Wf + 1074 \pm 10$
(4x2 TRACTOR)	REAR	\uparrow	Hr = $-0.0105 \cdot$ Wr + 1158 ± 25

MODEL		TIRE TYPE	FORMULA(Hf/Hr)		
HD250 - D6AC	FRONT	11.00X20-16PR	$Hf = -0.0150 \cdot Wf + 1100 \pm 10$		
(11.5T-LONG)	REAR	1	$Hr = -0.0034 \cdot Wr + 1106 \pm 25$		
HD250 - D6CA	FRONT	\uparrow	$Hf = -0.0150 \cdot Wf + 1104 \pm 10$		
(11.5T-LONG)	REAR	\uparrow	$Hr = -0.0034 \cdot Wr + 1106 \pm 25$		
HD260 - D6AC	FRONT	\uparrow	$Hf = -0.0134 \cdot Wf + 1094 \pm 10$		
(16T-SHORT)	REAR	\uparrow	$Hr = -0.0028 \cdot Wr + 1100 \pm 25$		
HD260 - D6CA	FRONT	\uparrow	Hf = $-0.0134 \cdot Wf + 1097 \pm 10$		
(16T-SHORT)	REAR	\uparrow	$Hr = -0.0028 \cdot Wr + 1100 \pm 25$		
HD260 - D6AC	FRONT	\uparrow	$Hf = -0.0130 \cdot Wf + 1093 \pm 10$		
(16T-MIDDLE)	REAR	\uparrow	$Hr = -0.0029 \cdot Wr + 1101 \pm 25$		
HD260 - D6CA	FRONT	\uparrow	$Hf = -0.0130 \cdot Wf + 1096 \pm 10$		
(16T-MIDDLE)	REAR	\uparrow	Hr = $-0.0029 \cdot Wr + 1101 \pm 25$		
	FRONT	315/80R22.5-20PR	$Hf = -0.0129 \cdot Wf + 1108 \pm 10$		
(17T-MIDDLE)	REAR	12R22.5-16PR	$Hr = -0.0028 \cdot Wr + 1100 \pm 25$		
HD19M	FRONT	11.00X20-16PR	$Hf = -0.0159 \cdot Wf + 1104 \pm 10$		
(19M-P/CARGO)	REAR	\uparrow	$Hr = -0.0036 \cdot Wr + 1108 \pm 25$		
HD270	FRONT	\uparrow	$Hf = -0.0159 \cdot Wf + 1115 \pm 10$		
(6x4 DUMP)	REAR	\uparrow	$Hr = -0.0031 \cdot Wr + 1110 \pm 25$		
HD270	FRONT	\uparrow	$Hf = -0.0132 \cdot Wf + 1095 \pm 10$		
(6x4 MIXER)	REAR	\uparrow	$Hr = -0.0031 \cdot Wr + 1105 \pm 25$		
HD700	FRONT	\uparrow	$Hf = -0.0184 \cdot Wf + 1097 \pm 10$		
(6x4 TRACTOR)	REAR	\uparrow	$Hr = -0.0033 \cdot Wr + 1074 \pm 25$		
HD1000	FRONT	\uparrow	$Hf = -0.0184 \cdot Wf + 1099 \pm 10$		
(6x4 TRACTOR)	REAR	<u> </u>	$Hr = -0.0033 \cdot Wr + 1081 \pm 25$		

MODEL		TIRE TYPE	FORMULA(Hf/Hr)		
HD310 -D6AC	FRONT	11.00X20-16PR	Hf=-0.0063 · Wf+1087±10		
(19.5T-SHORT)	REAR	\uparrow	$Hr = -0.0028 \cdot Wr + 1109 \pm 25$		
HD310 -D6CA	FRONT	\uparrow	Hf=-0.0063 · Wf+1088±10		
(19.5T-SHORT)	REAR	\uparrow	$Hr = -0.0028 \cdot Wr + 1109 \pm 25$		
HD320 -D6AC	FRONT	\uparrow	Hf=-0.0064 · Wf+1087±10		
(19T-EXTRA LONG)	REAR	\uparrow	$Hr = -0.0028 \cdot Wr + 1108 \pm 25$		
HD320 -D6CA	FRONT	\uparrow	Hf=-0.0064 · Wf+1089±10		
(19T-EXTRA LONG)	REAR	\uparrow	Hr=-0.0028 · Wr+1108±25		
HD370	FRONT	385/65R 22.5-20PR	Hf=-0.0047 · Wf+1112±10		
(23T DUMP)	REAR	12R22.5-16PR	Hr=-0.0029 · Wr+1119±25		
HD380	FRONT	385/65R 22.5-20PR	Hf=-0.0053 · Wf+1120±10		
(9m³-MIXER)	REAR	12R22.5-16PR	$Hr = -0.0030 \cdot Wr + 1120 \pm 25$		

FORMULA_4X2

	MOE)EL	HD160, SHORT	HD160, LONG	HD170, SHORT	HD170, LONG	HD160	DUMP	4x2 TRA	CTOR
	ENG	INE	D6BR	D6BR	D6AB-D	D6AB-D	D6BR	D6DA	D6AC	D6CA
WT	KERB	FRT	3,890	3,980	4,250	4,390	3,930	3,980	4,450	4,655
		RR	3,430	3,410	3,390	3,420	3,470	3,475	2,425	2,475
	G.V.W	FRT	5,435	5,865	5,885	6,385	5,720	5,770	5,745	5,950
		RR	10,015	9,655	10,385	10,055	9,810	9,815	9,760	9,810
Hf, Hr	KERB	FRT	1033.6	1023.7	1033.6	1023.7	1024	1024	974	974
		RR	1121.4	1105.5	1121.4	1105.5	1106.3	1106.3	1031.5	1031.5
	G.V.W	FRT	1010.4	997.9	1010.4	997.9	999.6	999.6	946.2	946.2
		RR	1045.2	1026.4	1045.2	1026.4	1026.1	1026.1	954.3	954.3
	FRONT	INCLINATION	-0.015016	-0.013687	-0.01419	-0.012932	-0.013631	-0.013631	-0.021467	-0.0215
		CONSTANT	1092	1078	1094	1080	1078	1078	1070	1074
	REAR	INCLINATION	-0.011572	-0.012666	-0.010893	-0.011922	-0.01265	-0.01265	-0.010525	-0.0105
		CONSTANT	1161	1149	1158	1146	1150	1150	1057	1058
		FOT	5000							

WT	C/CAB	FRT	5000							
		RR	600							
		Hf	1016.932	1078.1743	1093.9058	1080.4729	1077.5709	1078.2525	1069.529	1073.93
		Hr	1154.1481	1148.6915	1158.3289	1146.272	1150.195	1150.2582	1057.0228	1057.55

FORMULA_6X4 -(1)

MODEL			HD250, LONG	HD260, SHORT	HD260,	MEDIUM	HD260, MEDIUM-TAIWAN	P/CARGO
ENGINE			D6AC	D6AC	D6AC	D6CA	D6CA	D6AC
WT	KERB	FRT	4,500	4,425	4,485	4,700	4,845	4,540
		RR	6,310	5,560	5,770	5,900	5,750	6,510
	G.V.W	FRT	6,060	6,065	6,175	6,390	7,320	5,730
		RR	16,380	20,050	20,210	20,340	20,405	15,450
Hf, Hr	KERB	FRT	1032.5	1035	1035	1035	1045	1032.3
		RR	1084.8	1084	1084	1084	1084	1084.4
	G.V.W	FRT	1009.1	1013	1013	1013	1013	1013.4
		RR	1050.6	1042.7	1042.7	1042.7	1042.7	1052.2

	FRONT	INCLINATION	-0.0150000	-0.013415	-0.013018	-0.013018	-0.012929293	-0.015882
		CONSTANT	1100	1094	1093	1096	1108	1104
Γ	REAR	INCLINATION	-0.003396226	-0.00285	-0.00286	-0.00286	-0.002818151	-0.003602
		CONSTANT	1106	1100	1101	1101	1100	1108

WT	C/CAB	FRT						
		RR						
		Hf	1100	1094.3598	1093.3846	1096.1834	1107.642424	1104.4059
		Hr	1106.230189	1099.8473	1100.5028	1100.8747	1100.204367	1107.8477

FORMULA_6X4 -(2)

MODEL		HD270 DUMP	HD270 MIXER	6X4 TR	ACTOR	
	ENG	INE	D6AC	D6CA	D6AC	D6CA
WT	VT KERB FRT		4,700	4,520	4,380	4,520
		RR	6,240	7,120	4,470	4,500
	G.V.W	FRT	6,165	6,500	5,675	5,815
		RR	19,905	19,970	19,805	19,835
Hf, Hr	KERB	FRT	1040.5	1035.1	1016.2	1015.4
		RR	1091.3	1082.6	1058.8	1066.1
	G.V.W	FRT	1017.2	1008.8	992.3	991.5
		RR	1049.6	1042.7	1008	1015.3
	FRONT	INCLINATION	-0.01590444	-0.01328283	-0.018456	-0.018456
		CONSTANT	1115	1095	1097	1099
	REAR	INCLINATION	-0.00305159	-0.00310506	-0.003313	-0.003313
		CONSTANT	1110	1105	1074	1081
WT	C/CAB	FRT				
		RR				
		Hf	1115.250853	1095.138384	1097.0355	1098.8193
		Hr	1110.341932	1104,708016	1073.6077	1081.0071

FORMULA_8X4

MODEL			HD320,	20, E/LONG HD310, SHORT		, SHORT	HD370 DUMP	HD380 MIXER
ENGINE			D6AC	D6CA	D6AC	D6CA	D6CA	D6CA
WT	KERB	FRT	6,580	6,830	6,560	6,810	8,240	8,830
		RR	5,780	5,820	5,290	5,330	6,140	6,530
	G.V.W	FRT	11,705	11,955	11,470	11,720	17,600	17,275
		RR	19,785	19,825	20,010	20,050	19,910	19,815
Hf, Hr	KERB	FRT	1044.8	1044.8	1045.1	1045.1	1072.9	1072.9
		RR	1093	1093	1093.5	1093.5	1100.5	1100.5
	G.V.W	FRT	1012.3	1012.3	1013.7	1013.7	1028.3	1028.3
		RR	1053.7	1053.7	1053	1053	1059.9	1059.9

FRONT	INCLINATION	-0.0063415	-0.0063415	-0.0063951	-0.0063951	-0.00476496	-0.00528123
	CONSTANT	1087	1088	1087	1089	1112	1120
REAR	INCLINATION	-0.0028061	-0.0028061	-0.0027514	-0.0027514	-0.00294844	-0.00305608
	CONSTANT	1109	1109	1108	1108	1119	1120

WT	C/CAB	FRT						
		RR						
		Hf	1086.52683	1088.1122	1087.05193	1088.65071	1112.163248	1119.533274
		Hr	1109.21949	1109.33174	1108.05469	1108.16474	1118.603413	1120.456191

8. P.T.O CONTROL

8. P.T.O CONTROL

- 8-1 T/M PTO
 - (1) Use of genuine parts P.T.01)Unless otherwise provided for, be sure tomuse genuine parts.

2)Refer to appendix P.T.O ASSY drawing for details in using power.

- (2) Use P.T.O other than genuine parts A particular reason, when using PTO other than genuine parts, consult with HMC.
- (3) Cautions regarding the propellar shaft driving P.T.O
 - 1)Make sure that an angle of intersection of propellar shaft makes a solid angle be 15. MAX, and also the angle of intersection of the both ends of propellar shaft is the same.
 - 2)As in driving, there is a displacement of about ± 10mm(up and down, left and right) from the position of P.T.O outlet, take notice of an allowable angle of intersection of propellar shaft.
 - 3)The direction of P.T.O output shaft is contrary to the direction of engine revolution.

PTO type	T/M type	ALLOWABLE TORQUE	T/M & PTO GEAR	MODEL
47110 -7F900	H160S2X5 H160S6	50kg·m /1000RPM	$\frac{29}{16}\chi\frac{10}{29}$	HD250 CARGO(D6AC,D6CA), HD260 CARGO(D6AC,D6CA), HD390 TRACTOR(D6AC,D6CA), HD270 DUMP(D6AC), HD320 CARGO(D6AC,D6CA), HD310 CARGO(D6AC,D6CA)
47110 -7D900	T15S6	30kg · m /1000RPM	$\frac{28}{15} \times \frac{9}{28}$	HD250 CARGO(D6CA) : OPT HD260 CARGO(D6CA) : OPT

(4) T/M P.T.O table

24

പ്

8-2 Flywheel PTO

In mixer the flange form PTO is installed on the upper end of flywheel. In case of PTO, refer to the appendix flywheel PTO drawing and chassis cab drawing.

8-3 Cautions needed for the p/shaft driven by PTO

 As the length of shaft of the p/shaft for driving to be linked to flywheel PTO is short and an angle of intersection is large, pay full attentions to the arrangement of device, and make A and B, an angle of intersection, small as much as possible, also the difference in an angle of intersection should nearly be "0".

Drive system of A type

Drive system of B type

- 2) In case A and B, an angle of intersection, are large, and also equivalent angle of intersection (√ | A² B² |) by the difference in an angle of intersection is large, flywheel PTO, p/shaft and hydraulic pump can break resulting from unreasonable torque in driving system.
- 3) Regarding the angle of intersection ofm p/shaft, observe the instructions below, and make sure that the torque of driving system is low as much as possible.

Angle of intersection of p/shaft : a solid angle is to be 12. MAX. Equivalent angle of intersection by the difference in an angle of intersection : $A^2 - B^2 = 0$

- 4) In case of the drive connecting system of B type as stated above, as the difference in an angle of intersection happens in driving through an angle of intersection(A,B) gets to be "0" in stopping, and an equivalent angle of intersection ($\sqrt{|A^2 - B^2|}$) by the difference in an angle of intersection in driving grows larger in case particularly an angle of intersection (A,B) is large, be sure to set up the angle (A,B) as small as possible by all means.
- 5) When unreasonable torque works upon the driving system, as main parts of the inside of an engine can get damaged, be sure to set up the driving system within 40Kgm.

VEHICLE : HD270 DUMP ALL HD270 MIXER, HD380 MIXER

9.EXTERIOR DRAWING OF THE CAB

- 9. EXTERIOR DRAWING OF THE CAB
 - (1) 4x2 / 6x4 ALL (SCALE : 1/25)

(2) 8x4 (SCALE : 1/25)

(3) ROOF SPOILER

(SCALE : 1/ 25)
10.CHASSIS FRAME DRAWING

11.CAUTIONS NEEDED FOR THE INSTALLATION OF THE P/SHAFT

11. CAUTIONS NEEDED FOR THE INSTALLATION OF THE PROPELLAR SHAFT

Be sure not to modify or alter propellar shaft, as it was designed to suit a vehicle feature. But in an unavoidable case, observe the following items.

- (1) 2-JOINT

(2) 3-P0INT

* Allowable specification

$$\begin{array}{rcl} \alpha_1\,,\,\alpha_2 &\leq & 9 \\ \mid \, \alpha_1^2 \,\pm\, \alpha_2^2 \,\pm\, \alpha_3^2 \,\mid &\leq & 25 \end{array}$$